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~Abstract

The Air Force Institute of Technology has been involved in developing Kalman

filter based trackers of ballistic missiles for 15 years. The goal of this thesis is to

develop a Multiple Model Adaptive Estimator (MMAE) that tracks the missile plume

(using a forward looking infrared sensor) and the missile hardbody center-of-mass

(additionally using low energy laser returns) for the purr, t e of directing a high power

laser to incapacitate the missile.

The missile plume "pogos" about an offset equilibrium point (relative to the

hardbody center-of-mass) with an amplitude and frequency of oscillation that are not

precisely known a priori. The MMAE algorithm estimates these parameters to

improve performance in tracking the hardbody center-of-mass.

To accomplish this MMAE structure, single Kalman filters were developed

and tested at the different parameter values. A Kalman filter residual analysis was

used on these working single filters to define the MMAE structure that provided the

most effective adaptation and most accurate target tracking.

A three-filter MM, structure gave the lowest hardbody center-of-mass

track.,. errors. The two-dimensional parameter space, pogo amplitude and

frequency, was successfully partitioned according to the frequency of oscillation.

When the plume pogo amplitude is large, the MMAE structure substantially reduces

the tracking errors of the hardbody center-of-mass, compared to a tracker without

adaptive pogo estimation.
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Enhanced Tracking of Airborne Targets

Using Forward Looking Infrared

and Laser Return Measurements

L Introduction

The United States of America has been under direct threat from nuclear tipped

Intercontinental Ballistic Missiles (ICBM's) for over thirty years. This threat, even

with the breakup of the Soviet Union, is alive and well, as is seen by the several

countries around the world that have acquired or are actively engaged in acquiring

this offensive nuclear capability. A defensive weapon that could be used to combat

an ICBM in its boost phase of flight is a High Energy Laser (HEL). This high

powered weapon has the unique ability to concentrate energy onto a small area of the

target to render the guidance system of the vehicle useless or to destroy the target

vehicle completely. A key to this HEL defensive weapon is the accuracy that needs

to be attained, as there is a finite amount of time that the laser beam must be

focused onto the target vehicle to accomplish the task.

This HEL is part of a system of components that includes a Forward Loking

Infrared (FLIR) sensor, a Low Energy Laser (LEL), end a pointing/tracking guidance

computer program. The FLIR sensor will provide position update information to the

computer program. The LEL is used to pinpoint !he missile hardbody. The returns



from this LEL device are used as inputs to the tracking algorithm along with the

FLIR measurements for further updates to the computer program. The

pointing/tracking computer program is the heart of this researchi.

This program will utilize the specific Kalman filter work that has been

progressing for over thirty years in the area of prediction and filtering. A Kalman

filter (KF) is used to estimate various conditions about a target vehicle. These

conditions are summarized in terms of a "state vector," a collection of variables that

describe certain dynamic characteristics of that vehicle. This vector () is estimated

at vL.ious times throughout this digital simulation. The most important times are

at the instant just prior to a sampled-data measurement update from the FLIR

sensor and the instant just after this update has occurred. The KF estimates the

state vector, X', at time tV from the updates provided by the FUR and LEL sensors.

This KF algorithm then uses an internal mathematica dynamics model made up of

a collection of differential equations to make the best possible prediction ofk at ti 1',

one sample period later [1].

The scenario that is simulkted for this research is to have an ICBM being

tracked in its boost phase of flight from a very large distance. The FUR Line Of

Sight (LOS) vector is pointing at the target vehicle with optics common to the FLR,

the LEL, and the HEL This system must accurately track the target vehicle despite

the variables that are introduced by nature (atmospheric jitter), vehicle dynamics
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(physical laws of motion), bending/vibration of the optical platform, and the vehicle

plume (plume pogo effect). Radiation from the target plume is projected onto the two-

dimensional FUIR image plane with the position and velocity of the centroid of this

plume estimated by the KF. The LEL is then swept along the ifiter-predicted velocity

vector to identify the center of mas of the missile hardbody. This scenario is shown

pictorially in Figure 1.1.

MissuoeoftVeckw

Mlsase Harcibdy Omntero.Maas

Plume Intensity Controld

M MRWAprn lm

Intensity Oentrold

LOS VdCr........1 FUR Plane

Figure 1.1 Missile Tracking Scenario
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The physical anomalies of atmospheric jitter and plume pogo effect must be

taken into account for accurate tracking. Atmospheric jitter is the distortion of light

as it traverses the atmosphere. Light arrives at the FUR plane in waves with a

phase that is independent of the previous light wave. Distorted phase fronts of

emanated waves result in translational shifts on the FUR image plane, called jitter.

An example of the problems caused by this phenomenon would be to try to aim a

pistol at a far-off target that is sitting on a hot, black surface (a target on a road).

The target would be enveloped in a "shimmer" of Lght. It would be very difficult to

focus on that target because of this atmospheric jitter effect. Furthermore, whatever

platfoim the optics is mounted upon will have an associated bending/vibration mode

that is activated whenever the platform is slewed for tracking purposes. Finally, the

plume pogo effect is a characteristic of a rocket plume such that the plume oscillates

about an equilibrium point relative to the missile hardbody as the rocket travels

through the air. This pogo effect has an associated frequency and amplitude of

oscillation, neither of which are known perfectly a priori.

These physical anomalies are represented in the Kalman filter mathematical

model as either "states" or "parameters." The differences between states and

parameters is that parameters vary more slowly than states and therefore do not

have to be represented in the model as full dynamic states. The addition of a state

adds a higher dimension and the associated mathematical complications to the model.
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Compensating for parameter variation will be accomplished in a different manner.

In this research, the amplitude and frequency of oscillation of the plume pogo

effect are to be represented as parameters, while the pogo offset position and velocity,

atmospheric jitter and the bending/vibration uncertainties will be full-blown states.

There will be several KF's that will be used simultaneously, each producing an output

state estimate. Each of these KEF's will be programmed with a different value for the

plume pogo effect parameters of amplitude and frequency of oscillation. If the real

world missile happens to be traveling along with the particular value of frequency

and amplitude as is programmed into KF #3, then KB #3 will produce the best state

estimate. The output of the bank of these KF's will be blended in a Bayesian fashion

that will take into account the outputs of all of the KFs no matter how bad each of

the particular filters is performing, weighing them according to how good their

assumed parameter value seems to be.

Besides producing an output state estimate, each of the filters produces a

"residual;" the difference between the incoming measurements and that filter's best

estimate of the incoming measurements. This residual quantity is a good measure

of how close that particular KF is to the actual real world. The residual wil be used

to calculate the probability weighting factor that will be multiplied with the state

estimate of that particular filter to come up with that particular filter's contribution

to the state estimate output for the entire computer algorithm. This computer
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algorithm scheme is called a "Multiple Model Adaptive Estimator" (MMAE) and is

further described in Section 1.2.

1.1 BACKGROUND

The Phillips Laboratory (formerly the Air Force Weapons Laboratory), at

Kirtland Air Force Base, New Mexico, has sponsored research for 15 years at the Air

Force Institute of Technology (AFIT) in the use of directed energy weapons to render

certain airborne targets (ICBM's) useless. The research started when AFIT

demonstrated the ability of a Kalman Filter (KF) based algorithm to outperform the

standard correlation tracker that the Air Force Weapons Laboratory had been using.

Central to the AFIT tracking scheme is the two-dimensional FUR sensor. The

FUR is a 300-by-500 picture element (pixel) array of individual radiation collecting

surfaces. Each pixel, 15 microradians per two-dimensional side, passively collects

radiation from the plume and the laser returns from the LEL. Within the entire 300-

by-500 pixel FUR image plane is an 8-by-8 tracking window. This smaller window

provides a position update of the plume centroid.

The block diagram that is being implemented is shown in Figure 1.2. This

algorithm has been used for 5 Masters theses in a row starting with Rizzo [34]. The
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Figure 1.2 Linear Kalman Filter/Enhanced Correlator Algorithm

FLIR output is provided to the KF/Correlation Tracker algorithm. This algorithm

compares the current FLIR data frame to an online-constructed template of the

target/plume intensity pattern. The correlator then determines the optimal offsets

in two dimensions that yield maximum correlation with the data generated by the

template. These offsets are pseudo-measurements for the Linear KF which estimates

the position and velocity oF the plume centroid and performs a propagation cycle to

form the best estimate of the states and measurements at the next sample period.
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The FLIR is also updated to have the FLIR Linf-Of-Sight (LOS) vector point at the

best estimate of the target vehicle location at the time of the next sample period.

1.2 SUMMARY OF PREVIOUS RESEARCH

Sixteen theses and a number of other documents report the ongoing

developments of the ballistic missile tracking problem. Each thesis contains a

synopsis of previous work. This section provides a general overview of the previous

ballistic missile tracker research completed at AFIT.

Research in this area was initiated by Mercier [26] in 1978, who compared

Extended Kalman Filter (EKF) performance to that of the AFWL correlation tracker

under identical conditions. An eight-state truth model was developed for simulation

purposes, consisting of two target position states and six atmospheric jitter states.

The position states defined the target location in each of two FUR plane coordinate

directions (azimuth and elevation), by accurately portraying target trajectories in

three-dimensional space and projecting onto the FUR plane. These two position

variables, generated by trajectory generation "external" to the truth model's state

equations, were treated as states simply for convenience in simulation, as for ease of

ganerating errors for plots. The atmospheric jitter was modeled by a third order

shaping filter driven by white noise for each FUR plane axis, as provided by The

Analytic Sciences Corporation (TASC) [16]; three states defined the atmospheric
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distortion in each of the two FLIR plane coordinate directions. The Kalman Filter

dynamics model consisted of four states: two states representing target position, and

two representing the atmospheric jitter (based on reduced order models, versus the

six states of the truth model). In both the truth model and filter dynamics model, the

target position states and atmospheric jitter states were defined in each of the two

FLIR plane coordinate directions. In the filter, the target position and jitter states

were each modeled as a first-order, zero-mean, Gauss-Markov process. The FUR

provided sampled data measurements to the filter at a 30 Hertz (Hz) rate. The FUR

measurement noises corrupting each pixel output due to background clutter effects

and internal FLIR noises were modeled in the filter as both temporally and spatially

uncorrelated. The target was considered as a point source of light (i.e. a long-range

target) having benign dynamics. The corresponding Airy disc on the FIR image

plane was modeled as a bivariate Gaussian distribution with circular equal intensity

contours. The conventional correlation tracker and the extended Kalman Filter were

compared across three different signal-to-noise ratios (SNR), using a ten-run Monte

Carlo analysis to obtain the tracket error statistics. The results of the comparison

(me-ns and standard deviations of tracking error) are shown in Table 1.1 for a

Gaussian intensity function dispersion, a., equal to one pixel. (For a Gaussian

intensity function dispersion equal to one pixel, most of the useful information is

contained in an area of about five pixels square).
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Correlation Tracker ',xtended Kalman Filter
Signal-to

Noise Ratio Mean Error 1 a Mean Error 1 a

20 7.0 8.0 0.0 0.2

10 8.0 10.0 0.0 0.2

15.0 30.0 0.0 0.8

Table 1.1 KF and Correlation Tracker Statistics Comparison

While the correlation tracker showed dramatic performance degradation as the

SNR was decreased, the Kalman filter showed only a minor change in its performance

at the lowest SNR tested. The extended Kalman filter was shown to be superior to

the correlation tracker by an order of magnitude in the root mean square (rms)

tracking error, provided the models ivcorporated into the filter were a valid depiction

of the tracking scenario. This success motivated a follow-on thesis to improve filter

modeling and thereby to enhance the performance.

The research accomplished by Hamnly and Jensen (8,201 investigated modeling

improvements in the filter and tested more dynamic target simulations. A

comparison was made between a new six-state filter and a new eight-state filter. The

six-etate filter dynamics target model included the four previous states as well as two

target velocity states in the FUR plane coordinates (azimuth and elevation); the
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dynamics model of the eight-state filter included two acceleration states in the FUR

coo'dinatee as well. The acceleration was modeled as Brownian motion (BM) (i = w,

where w is a zero-mean white Gaussian noise). The filter was also designed to

perform residual monitoring, which allowed the filter to react adaptively, and

maintain track, by quickly increasing the values in the filter-computed state

covariance matrix P, which in turn increased the filter gain K, when a target

maneuver was detected. A recommendation was also made to examine increasing the

Field-Of-View (FOV) during target jinking maneuvers to avoid losing lock. The

constant-intensity contours of the target were modeled as elliptical patterns as

opposed to the earlier circular equal-intensity contours in order to simulate closer

range targets, such as air-to-air missiles. The major axis of the target FUR image

was aligned with the estimated velocity vector. A number of different target

trajectories were tested against the six-state and eight-state filters, and while the six-

state filter performed well during moderate jinking maneuvers, the eight-state filter

performed substantially better while tracking high-g target maneuvers.

Other approaches to modeling the dynamics of the target in the filter were

considered by Flynn [61. He compared a Brownian motion (BM) acceleration target

dynamics model [8) and a constant turn-rate (CTh) dynamics model. The CTR model

portrayed the target behavior by modeling the acceleration as that associated with

CTR dynamic& Concatenating such constant turn-rate segments together provides

an accurate portrayal of manned target evasive maneuver trajectories. Additionally,
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a Bayesian multiple model adaptive filter (MMAF) was developed using the BM

acceleration dynamics model. A MMAF Tigure 1.3) consists of a bank of K

independent Italman filters, each of which is tuned to a specified target dyniancs

characteristic or parameter (a,, a2, ... aK in Figure 1.3). The time histories of the

residuals (rk(t i) for k = 1,2,...,K in Figure 1.3) of these K Kalman filters are processed

to compute the conditional probabilities (pk(-'- in Figure 1.3) that each discrete

parameter value is "correct." The residuals (f the Kalman filter, based upon the

'correct" model, are expected to be consistewly smaller (relative to the filter's

FOW bX(t,)

4IlL

0,(t) p, (to

z(t,)

r r21-12 "
too 01) ~

IKJ

ftmur 1.3 Multiple Model Adaptive Hiter
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internally computed recidual rms values) than the residuals of the other mismatched

filters (i.e. based upon "incoiTect" models) [6]. If that is true, then the MMAF

algorithm appropriately weights that particular Kalman filter more heavily than the

other Kalman filters. These values are used as weighing coefficients to produce a

probability-weighted average of the elemental filter outputs [6]. Therefore, the state

estimate ('a,,) in Figure 1.3) is actually the probabilistically weighted average of

the state estimates generated by each of the K separate Kalman filters (0 (t ) in

Figure 1.3). In this research K was 3 and testing of the three filter models was

conducted for three different flight trajectories which included 2-g, 10-g, and 20-g

pull-up maneuvers. Unfortunately, the residuals of the 3 Kalman filters did not

differ fi-om each other enough to perform the weighing function properly, and the

MMAF did not, track well. The BM and CTR filters both performed equally well at

2 -gs. The CTR filter was found to be substantially better than the BM filter for 10-g

and 20-g pall up maneuvers.

The research to that point had assumed tha the filter had a priori knowledge

of the target shpe and intensity profile, and that is was a singio-hot-spot target.

Singletrwy [37] iniproved the realiam in the target model by developing a model in the

FLR pITne which included multiple hot spots. However, he returned to the case of

very benign targets, as treated by Mercier. The filter did not assume a priori

knowledge of the target size, rhape, or number or location of hot spots. A new data

proc.msing 6cheme (Figure 1.4) was developed which included the use of the Fast
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~igure 1.4 Data Processing Scheme Using FR T and IFFT.

~Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT), each of

~which can be produced with a lens if optical processing is used. The plan included

~two data paths for processing the intensity measurements z(t ). On the first path (the

lower path in Figure 1.4), the , x 8 array of intensity measurements from the FIIR

is arranged into a 64-dimensional measurement vector. TLis measurement vector is

applied to the extended Kalman filter (as in prior work). The purpooo of the second

path is to provide an estimate of the target's intensity shape function. Centered

target shape functions are time-averaged with previous centered shape functions in
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order to -generate the estimated target template (h in Figure 1.4) and partial

derivatives of it with respect to the states (H in Figure 1.4), as needed by the

extended Kalman filter. The first block in that path of Figure 1.4 has the 8 x 8 FUR

data padded with rows and columns of zeros to make up a 24 x 24 pixel array. The

purpose of this padding is to ensure that the periodicity of the Discrete Fourier

Transform will not degrade effects within the original data array [23]. This 24 x 24

pixel image is then centered using the shifting theorem of Fourier transforms. The

shift theorem states that a translation of an image in the spatial domain results in

a linear phase shift in the spatial frequency domain. To negate the translational

effects of an uncentered target image in the spatial domain, the Fourier transform

of the translated image is multiplied by the complex conjugate of the desired linear

phase shift [37]. The extended Kalman filter model, in path one, which was

developed by Mercier [26], was used to provide the optimal estimate of the required

linear translation. The filter state estimates are used to develop the complex

conjugate of the linear phase shift and provide the centered measurement functions.

Before the IFFT is taken, the resulting pattern is exponentially smoothed to yield an

approximation to averaging the result with N previously centered frames of data, to

accentuate the actual target intensity image function and to attenuate the effect of

measurement noise. The result is a centered pattern with noise effects substantially

reduced. Following the application of the ITT to form the nonlinear function of

intensity measurements (h of Figure 1.4), the spatial derivative (approximated by a

differencing operation) is used to determine the linearized function of intensity
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measurements (H of Figure 1.4). These are both used by the Kalman filter in

processing the next sampled measurement [37]. Two sets of position estimates are

provided by the K block; first, the platform controller is furnished the propagated

dynamics position estimate, Add(ti.) and 'd(ti+1), as this is the best estimate of the

plume intensity centroid at the time of the next measurement. Note that this

estimate only has dynamics information concerning the plume centroid, no

atmospheric jitter information is included, since it is desired to point at the true

location of the target, not the jittered version of it. The other position estimate, &d(ti')

x,(ti+) and yd(t1 ) + A(ti), is used for centering the target image in the incoming raw

FLIR data. Note that this estimate does include dynamics and atmospheric position

information since the real world target image is translated by atmospheric jitter

along with real world physical dynamics, The results of this data processing scheme

were inconclusive due to filter divergence problems. Despite the problems

encountered with the filter, the concept was considered to have performance

potential.

Rogers [351 continued the work of developing a Kalman filter tracker which

could handle multiple hotspotp with no a priori information as to the size, shape,

intensity, or location of the target hot spots. Moreover, he continued the application

to benign target motion, as Singletery [371 had done before, in order to concentrate

-on the feasibility of adaptively identifying the target shape. Using digital signal

processing on the FLIR data (as described above) to identify the target shape, the
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filter uses the information to estimate target offset from the center of the FOV, which

in turn drives a controller to center the image in the FUR plane. Algorithm

improvements included replacing the Forward-Backward Difference block of Figure

1.4 with a partial differentiation opzration accomplished as a simple multiplication

in the Fourier domain before the IFFT block.

Rogers also considered an alternative design that used the target image h as

a template for an enhanced correlator, as was shown in Figure 1.2. The position

offsets produced as outputs from the correlator were then used as "pseud->

measurement" inputs to a linear Kalman filr. The enhanced correlation algoritbmr

of Figure 1.2 compares the FUR image to an estimated template instead of the

previous image, as is done in the standard correlator. This tracking concept is thus

a hybrid of correlation tracking and Kaiman filtering [35]. Its perfctrmance was

compared to the results of earlier extended Kalman filters that used the raw FUR

data as measurements [8]. The extended Kalman filter performed well without a

priori knowledge of the shape and location of the intensity centroid, the enhanced

correlator used with the linear Kalman filter showed comparable performance with

the extended Kalman filter while providing redur(ed computational loading.

Millner [28] and Kozemehak [111 tested an extended Kalman filter and a linear

Kalman filter/enhanced correlation algorithm against close range, highly

maneuverable targets. The linear four-state filter used in the previous research was
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replaced by an eight-state filter consist'. 'g of position, velocity, acceleration, and

atmospheric jitter states in each of the two coordinates of the FUR plane (azimuth

and elevation). Two target dynamics models were also investigated. The target was

first modeled as a first-order Gauss-Markov acceleration process, and secondly with

a constant turn-rate mode. Both filters performed well without a priori knowledge

of the target size, shape, and hot spot location, using the FFT data processing method

for identifying the target shape function [35,37]. However, at target maneuvers

approaching 5 g's, the filter performance degraded considerably. It was noted that

the tracking was substantially better when the Kalman filter dynamics model closely

matched the target trajectory, but that a single nonadaptive filter was inadequate.

The Bayesian MMAF technique (6] was reinvestigated by Suizu [40] based on

the recommendations of the previous work. The MMAF (Figure 1.3) consisted of two

elemental Kalman filters. One elemental filter was tuned for benign target

maneuvers and obtained sampled measurement information from an 8 x 8 pixel FOV

in the FUR plane. A second filter was tuned for highly dynamic maneuvers and

obtained sampled measurement information from a 24 x 24 pixel FOV in the FUR

plane. The technique allowed the MMAF to maintain track on target trajectories up

to 20 g's at a distance of 20 kilometers. The MMAF was configured for both the

linear Kalman filter/enhanced correlation algorithm [35] and the extended Kalman

filter. Both filtering schemes exhibited comparable rms tracking performance results,

with the correlator/linear Kalman filter having smaler -ean errors and larger
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standard deviations than the extended Kalman filter, as seen in earlier work of

Rogers [35]. The state rms tracking error was on the order of 0.2 to 0.4 pixels (one

pixel being equivalent to 20 microradians on a side).

The potential of the MMAF technique with the FFT processing method was

continued by Loving [14]. A third filter was added to the bank of filters, tuned for

intermediate target maneuvers and obtaining sampled measurement information

from the 8 x 8 FOV in the FUR plane. This MMAF showed significant performance

advantages over all the previous filters. Additionally, a Maximum A Posteriori (MAP)

algorithm was developed and compared with the Bayesian MMAF. The MAP

algorithm differs from the Bayesian MMAF of Figure 1.3 in that the MAP algorithm

uses the residuals of the separate filters to select the one filter with the highest

probabilistic validity, while the Bayesian MMAF uses a probability-weighted average

of all filters in the bank. The Bayesian and the MAP techniques produced similar

results and both delivered performance that surpassed previous filters.

Netzer [311 expanded the study of the MMAF algorithm. He investigated a

steady-state bias error that was seen when tracking a target exhibiting a high-g

constant-turn-rate maneuver. A major cause of this bias is the MMAF being tuned

to anticipate equivalent a tions in all FUR plane directions. This causes

mistuning in the iection (azimuth) while maintaining lock on the highly dynamic

y-direction (elevation) transient for a trajectory starting horizontal]y and then pulling
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up with a high-g maneuver. This motivates the concept of individual x- and y-

channel target-motion models (and tuning parameters) in the elemental filters in the

MMAF, which would allow adaptive filtering for maneuvers in the x- and y-channels

independently [31]. The size of the FOV was also investigated. When a target came

to within five kilometers of the FUR platform, the 8 x 8 FOV was saturated with the

intensity centroid image, resulting in a loss of track. This analysis motivates a

changing FOV to maintain lock for targets and also warrants the possibility of adding

another Kalman filter which is tuned for extremely harsh maneuvers at close ranges.

A study of the aspect ratio (AR) associated with target's intensity centroid was also

accomplished to identify filter tracking characteristics for various target image

functions [31]. This study used "greyscale plots" to support the analysis. A greyscale

plot is a pictorial display of an image in which shading of the image is used to

indicate similar parameters. In this case, the plot indicated regions of varying levels

of the intensity of the filter-reconstructed target image in a 24 x 24 pixel FOV. Four

different AR values of 0.2, 0.6, 5.0, and 10.0 were compared to the nominal AR of 1.

The results showed that tracking was slightly impaired for images with AR as high

as 5. The reduced performance was primarily along the semi-major axis of an

elliptically modeled intensity centroid. Additionally, a target-decoy experiment was

conducted in which a high density decoy was also located in the FOV with the target.

Sinze the decoy was modeled with different dynamics not given to the filter, it was

hoped that the flter would reject the decoy. This was not the case; the filter looked

onto the hotter decoy image. This indicates that the inability of the current filter

1-20



algorithm to reject this type of bright hotspot requires isolating the target image in

a small FOV or some other concept to ensure tracking of the desired target.

The previous research efforts [14,31,40] used Gauss-Markov acceleration

models in the development of the MMAF. Tobin [411 implemented the CTR dynamics

model in another MIVIAF. His results showed that the Gauss-Markov MMAF

exhibited smaller bias errors while the CTR MMAF gave smaller steady state

standard deviation errors; both filters had comparable rms errors. Motivated by

earlier research [311, he also developed an 8 x 24 pixel FOV for both the x- and y-

directions of the FLIR image plane to be used with filters designed to anticipate

harsh target accelerations in a specific direction (along which the longer side of the

-FOV would be oriented). This resulted in five elemental filters: the original three as

in the research by Loving and Netzer, plus the additional two just described. The

results showed that the filter maintained lock on a target during a highly dynamic

maneuver in the y-direction while maintaining substantially better steady state bias

performance in the benign x-direction. However, this preliminary study only tuned

the filters for high acceleration in the horizontal or vertical single directions (as well

as filters in which no specific direction was preferred).

Leeney [121 expanded the previously used Gauss-Markov truth model by

incorporating benc~ig vibrational states. The elemental filters in the MMAF were

not modeled with this information through explicit state variables, but performed well
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up to a 10-g maneuver. A performance investigation was also conducted as to the

effects of increasing the measurement update rate from the previously used 30 Hz to

50 Hz. The sampling rate of 50 Hz showed a minor performance improvement, but

also increased the computational loading because of the higher rate. A preliminary

study was also done on replacing the 8 x 24 pixel FOV in the x- and y-directions [411

on the FUR plane with a single rotatable 8 x 24 pixel FOV, which is also known as

the rotating rectangular-field-of-view (RRFOV). The idea was to align the long side

of the rectangular FOV with an estimate of the acceleration vector. The higher

precision velocity estimate was actually used instead of the noisier acceleration

estimate, and it was assumed that the acceleration direction would be essentially

orthogonal to the current velocity vector direction for aircraft type targets and

maneuvering missiles. Additionally, the five elemental Kalman filters in the MMAF

bank would be reduced to four by using this FOV rotation scheme. The results were

not conclusive, but the insight provided motivation to continue the study.

The RRFOV research was continued by Norton [32]. He discovered that the

appropriate choice of the filter dynamics driving noise strength Q dictated the filter's

response to a high-gjinking maneuver, and that the size of the FOV could be reduced

to an 8 x 8 pixel rotating FOV, also known as the rotating square field of view

(RSFOV). His investigation showed that a non-rotating square FOV could provide

good performance, but that the dynamice noise strength Q mataix value must be large

in the elements corresponding to the direction of the acceleration vector. A
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mathematical matrix transformation was developed which "rotated" the Q matrix to

keep the larger values aligned with the acceleration vector. A study of both the

rotating FOV and rotating the Q matrix provided advantages and disadvantages for

each method. Both methods are affected by the tuning parameters used to represent

the rms level of acceleration of the target. The rotating FOV improves the x-direction

(azimuth) estimation for dominant y-direction (elevation) dynamics compared to

previous MMAF algorithms (on pull-up maneuvers), but does not improve y-direction

estimation for dominant y-direction dynamics. Rotating the Q matrix adaptively

improves estimation of both x- and y-directions and improves the jink maneuver onset

error transients, but is dependent on the orthogonality of the velocity and

acceleration vectors and proper initial tuning parameters. The conclusion was that

both methods employed together provide the ability to adjust filter characteristics to

differentiate between harsh and benign dynamics in any orientation of target

acceleration (rotating Q) while at the same time maintaining appropriate view

resolution in the directions of both benign and harsh dynamics (rotating FOV).

Therefore, the combination allows for tracking highly maneuvering targets without

sacrificing the resolution provided by the smaller RSFOV [32].

The research up to this point was primarily directed towards tracking aircraft

and missiles from a ground-based FUR plane. Rizzo [34] initiated research on a

space-based platform which could track targets using the same filtering techniques.

Since the linear Kalman filter/enhanced correlator algorithm had proven to be
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computationally more efficient than the extended Kalman filter, it was chosen as the

system filter for study. The plume "pogo" (oscillation) phenomenon of a missile in the

boost phase of flight was modeled in the truth model and in one of two filters used

for the analysis. The pogo was modeled as a second-order Gauss-Markov process, and

applied in the direction of the missile velocity vector. The plan was to estimate the

pogo states adaptively using the MMAF algorithm, treating the pogo amplitude and

oscillation frequency as uncertain parameters. Although the elemental filters were

developed, no MMAF performance was accomplished, due to elemental filter

performance difficulties.

Three rotation schemes were also developed and tested. The first scheme,

referred to as the rotating field-of-view (RFOV), involved using the 8 x 8 FOV filter

and aligning a single axis of the FUR plane with the estimated velocity vector of the

target; therefore one of the coordinate axes of the FOV would stay aligned with the

oscillation of the plume. Note that, for this class of targets, harsh maneuvering

accelerations orthogonal to the velocity vector were not anticipated. The second

schemne, referred to as the diagonal rotating field-of-view (DRFOV), used the 8 x 8

FOV with the diagonal aligned with the oscillation of the plume. The motivation

behind this scheme is that the 8 x 8 FOV, oriented in such a fashion, will be able to

"see" more of the target's intensity image, thus enabling the sensor to obtain more

measurement information 134). The third tracking scheme was the rotating

rectangular field-of-view (RRFOV) algorithm developed from previous rescrh
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[12,41]. The RFOV, DRFOV, and the RRFOV algorithms [31] were tested along with

the non-rotating field-of-view (NRFOV) filter. The NRFOV is the standard tracker

sed in previous studies [12,31,41]. The DRFOV scheme was shown to be superior

to the other three tested for providing enhanced tracking of a missile hardbody whose

plume is undergoing a pogo phenomenon.

The eight-state filter (without pogo states; two target position states, two target

velocity states, two target acceleration states, and two atmospheric jitter states) and

the ten-state filter (with pogo states) revealed a problem that may have gone

unnoticed in previous work. Following tuning of the filters with a ten-state truth

model (2 target dynamics states, 6 atmospheric states, and 2 pogo states; note the

bending/vibration states were removed), it was discovered that the eight-state

(without pogo states) filter outperformed the ten-state (with pogo states) filter. An

investigation into the cause of the irregularity revealed that there was a serious

observability problem in both filters The affected states were target velocity and

acceleration. A recommendation was made to remove the acceleration states in the

ten-state filter, and to model the velocity stat in this new eight-state filter as a

first-order Gauss-Markov process.

Eden (31 resumed the researdh of the space-based FLR platform. The mcope

of the tracking problem was expanded by requiring the filter to track the hardbody

of the missile rather than just the intensity centroid from the plume on the FLR.
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Since the FLIR could not supply the needed information about the hardbody location

relative to the image center-of-intensity to the Kalman filter, another measurement

source was developed. Under the advisement of the Phillips Laboratory, the new

measurement source was identified as a low-energy laser. The laser actively acquires

measurement data while the FLIR obtains its measurement iformation passively.

This scheme calls for a six-state Kalman filter (consisting of two position states, two

velocity states, and two atmospheric jitter states) to provide both a position vector

and a velocity vector estimate of the target plume. The low-energy laser is scanned

along this estimated velocity vector from the target plume image intensity center to

intercept the hardbody. The hardbody is modeled as a rectangle with binary

reflectivity. When the low-energy laser (modeled with a beam width of 2.75 meters

at the target) illuminates the hardbody, the reflection is received by a low-energy

laser sensor on the platform. This speckle information is provided to a single-state

Kalman filter which estimates the distance between the center-of-mass of the missile

hardbody and the center-of-intensity (centroid) of the plume along the velocity vector

direction. The center-omass of the hardbody is defined as the midpoint of the scan

across the hardbody if the centerline of the laser beam crosses the aft end of the

missile and the top (nose) of the hardbody, or if the laser beam crosses the aft end

and one of the sides of the hardbody. The rults o the laser can show that the

intenception ofthe laser with the hardbody occurred only 10-20* of the time. This low

ratio of hitting the target was tentatively attributed to the aix-state filter being tuned

for estimating only the intensity centroid location on the FLIR plane and not for
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precise velocity estimation. Since the velocity vector must be accurately estimated

for active illumination of the target to be a viable concept, it was recommended that

the filter also be tuned for accurate velocity estimates.

Tracking the center-of-msss of a missile hardbody ung FLIR measements

and low-energy laser illumination was further investigated by Evans [4]. He

surmised that the tracking error could provide more insight if it were separated into

the x- and y- (azimuth and elevation) components, or into along-track and across-

track (24 perpendicular axes of the hardbody) components (Eden [3] had only

evaluated the one along-track component). Evans proposed the latter method would

provide better -nfo on relativa to the principle axes directions of the physical

error phenomenon. An eight-stpte filter was developed by augmenting Eden's six-

state filter [31 with two additiaual bias Rtates used to estimate the x- and y-

components of offset between the plume centroid and the %.ardbody center-of-mass [4].

A comparison between the eight-state filter and Eden's one-state filter used in

conjunction with the six-state KIR filter, resulted in negligible difference in

performance. Evans' analysis of the eighttate filter's error statistis showed that

the tracking error is much greater in the along-track direction than in the across-

track detion, and thus the separate one-state filter and six-state FUR filter

performed as well as the al-inclusive eightate filter.
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Aside from investigating the tracking error statistics, Evans enhanced Eden's

hardbody model, which treated reflectivity as a binary on/off function, with a

hardbody reflectivity model that accounted for the cylindrical nature of a missile and

its typical nonorthogonality to the line-of-sight, to provide increased realism in the

sinmlation. Two reflectivity functions, cross-sectional and longitudinal, were defined

base upon empirical data obtained from a radar return off of a 20 x 249 inch cylinder

with hemispherical endcaps, rotated longitudinally in th6 plane of the radar source

[5]. As shown in Figure 1.5, the cross-sectional and longitudinal reflectivity functions

Reflectivity Function Magnitude
Values vs. Displacement from
Hardbody Centerline

113 5013 1
0 23459 ?5 25 954321 10

1 40.0 m

!M
~3.0Om

Figure 1.5 Discrete Implementation of Cross-Sectional Leflectivity Function
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were incorporated into Eden's rectangular hardbody model as 29 discrete weighted

line segments along the longitudinal ais of the hardbody.

Evans also found that the sensitivity level of the lov -energy sensor is a factor

in determining the reflectivity received at the sensor [4]. The sensitivity level

represents a threshold below which the reflected return is indistinguishable from

sensor noise. A sensitivity factor is incorporated in the simulation to define the

appropriate sensitivity level required to detect a hardbody's return as well as

represent the physical limitations of the sensor.

Performance data collection from the eight-state filter and one-state/six-state

filter combination hinged upon the successful illumination of the hardbody by tfe

low-energy laser. Evans was faced with a low target intercept rate (10%-20%), which

inhibited any useful error analysis of the canter-of-mass offset filters. Realizing this,

Evans generated an ad hoc technique of offsetting the low-energy laser scan relative

to the FUR estimated velocity vector and "sweeping" the scan across the hardbod,,

thus providing guaranteed hardbody llumination infoination. However, the "sweep"

is not an optimal tool and should only be used to test the center-of-mass offset filters

in the simulation [4]. Both the new reflectivity hardbody model and laser sweep were

cmployed to evaluate the performance of the eight-state filter and one-state/six-state

filter combination center-ofmas estimnators.

1-29



Herrera [9] continued to investigate the use of laser returns to determine the

offset between the hardbody and the plume intensity centroid. However, he used the

information contained in the Doppler spectra of the returns as opposed to the speckle

reflectance magnitude. Experiments had shown that the laser speckle return of a

solid-propellant rocket motor is of the same magnitude as that of the hardbody as a

result of the metallic particles piesent in the propellant [1]. Thus, part of the plume

is misinterpreted as the missile hardbody. The returns from the plume can cautie a

non-negligible bias in the intensity centroid to center-of-mass offset estimate of 25 to

30 meters, up to 90% of the times a laser scan is successful. This tendeney was not

incorporated into the simulations completed by Eden Pnd Evms [3,41. Herrera first

showed that, as suspected, a bias existed in the offset estimates using the one-

state/six-state filter combination based on plume speckle return measurements

utilized by Eden and Evans.

Hen'era proposed that the two types of information in the Doppler frequenry

spectra, magnitude of frequency shift and spread of the return spectrum, could be

used to obtain a finer discernment of the plunathmrdbody interface. This proposal was

based on the fact that the spectral coutent of the hardbody and plume returns exhibit

very different Doppler characteristics that should be readily distinguishable. His

approach to using this information was not to simulate the Doppler phenomenon

itself, but to simulate the quality of the returns provided as measurements to a

single-state linear Kalman filter that estimates the offset between plume intensity
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centroid and missile hardbody center-of-mass. Herrera simulated the quality of the

low energy laser return as a function of laser wavelength and signal-to-noise ratio,

and simulated a specified probability of no Doppler information at a given sample

time due to either the plume and hardbody spectra being indistinguishable or the

low-power laser beam missing the target body [9].

To prove the utility of using Doppler spectra, Herrera developed a one-state

offset filter based on Doppler measurements to replace the one-state offset estimator

used 1 i Eden and Evans [3,4]. He maintained the same independent filter structure

as used before, which utilized a six-state filter (four target dynamics and two

atmospheric jitter states) in conjunction with the offset filter. He also developed a

two-elemental-filter Modified MAP MMAF that incorporated both the speckle return

and the Doppler return measurements. Both configurations successfully showed that

the Doppler return information allowed more accurate determination of the

lrdbody/plume interface. The one-state filter based only on Doppler measurement

data delivered unbiased estimates of the offset, and in the cas of the two-state

adaptive filter based on both Doppler and speckle information, use of Doppler spectra

permitted accurate calculation of the bias in the offset measurement from the speckle

return [9].

Ching [11 performed tests to determine the caure of the observability problems

in the filter. He accomplished an observability Giamian analysis for six different
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filter models, looking at the size of the eigenvalues relative to each other. A

stochastic observability test was performed on a 12-state (6 jitter states and 6 target

dynamic states; 2 each for position, velocity, and acceleration) and an 8-state (same

target dynamics states with only 2 jitter states) filter model. This was then repeated

without including the acceleration states in either model. The purpose of this part

of Ching's thesis was to investigate whether there was some interaction between the

atmospheric jitter and other states, as well as to evaluate the observability of the

acceleration states. A different 8-state filter (2 position and 2 velocity states, 2

atmospheric jitter states and 2 plume pogo states) was also tested. Results from this

part of the research show large variations (orders of magnitude) of the observability

Gramian matrix. Positive and negative eigenvalues were seen. This was due to

either true unobservable states or to a numeric precision problems associated with

nearly unobservable states. The results were not completely conclusive. Several

filter configurations were run for a sensitivity analysis in determining the

estimatability and interaction between the jitter mid pogo phenomena- Ching found

that estimation of jitter is important to the accuracy of the filter; pogo estimation is

easier to estimate, but is not as mjor a factor as jitter in the estimation accuracy.

Several Monte Carlo runs were also accomplished using the AFIT software with the

6, MMAE elemental filter. He researched one of the elemental linear KUs that will be

used in the MMAE algorithm to provide adaptivity to amplitude and frequency of the

plume pogo phenomenon, assuming particular values for those two parameters.

Software errors introduced problems that directly affected the results from these
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Monte Carlo rum. The single filter that Ching researched forms the basis from

which this thesis is built upon.

1.3 THESIS OBJECTIVES

This thesis is the culmination of over fifteen years of research into the problem

of accurately tracking missiles using a FUR sensor. The focus of recent theses has

been based on the data algorithm of Figure 1.2. Rizzo used this block diagram,

replacing the KF block with a Multiple Model Adaptive Estimator composed of linear

Kalman filters running in parallel; the intent was to adapt to amplitude and

frequency of the "plume pogo" effect, but difficulties arose because (1) target

acceleration states were included in the missile dynamics model and (2) only FUR

data was used, with no additional measurement to help distinguish between plume

center-of-intensity location and the hardbody center-of-mass. Eden, Evans, and

Herrora incorprp!wd a Low Energy Laser (LEL) measurement upiate to help

estimate the missile hardbody center-±mass; d "plume pogo." Ching

researched one of the elemental filters that will make up the KF bank in the MMAE

algorithm of this research.

This research uses a FORTRAN computer simulation to implement the block

diagram of Figure 1.2. The Kalman filtm block will be replaced by an MMAE

incorporating a bank of para el-running, linear KF'e that are intended to propagate
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and update the state estimate based on a specific assumed value of pogo amplitude

and frequency. The multiple model adaptation process of the MMAE will estimate

the uncertain pogo parameters of amplitude and frequency of oscillation of the vehicle

plume. Although accuracy of parameter estimation is important and will be fully

investigated, the primary performance criterion of interest is the accuracy with which

the overall tracking algorithm follows the true target center-of-mass. The state

estimate from the KF bank will be a Bayesian mixture of the outputs from each

elemental KF, as shown in Figure 1.3. A certain probability weighting will be

assigned to the output of each particular filter according to how well that filter is

estimating the real world. The individual probabilities multiplied by that particular

filter's state estimate add to form the best available state estimate as a probability-

weighted average. The uncertain parameters of amplitude and frequency of

oscillation will be estimated in a similar manner [17].

The KF's in the MMAE scheme will be programmed and tuned for a specific

real world condition of the plume pogo amplitude and frequency of oscillation. The

Bayesian blend of these KF's (Figure 1.3) follows the slowly varying parameters of

amplitude and frequency of oscillation of the plume pogo observed in the real world.

The elemental KF'e will be individually tuned to provide optimal performance while

adequately discretizing the parameter space. The proper discretization of the

parameter space is one of the focuses of this research as this is critical in identifying

the pogo parameters.
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1.4 THESIS OVERVIEW

This chapter has introduced the problem statement and given a historical

perspective on this work with the description of all of the past work in this research

strain. Chapter 2 will describe the basic theory of Kalman filters and the

development of Multiple Model Adaptive Estimation (MMAE) theory. The simulation

,pace for the FUR and target vehicle and their reference frames will also be

described in this chapter. Chapter 3 details the dynamics and measurement models

from the real world truth model with Chapter 4 explaining the Kalman filter

dynamics and measurement models. Chapter 5 will discuss the obtained results and

Chapter 6 will contain the conclusions and recoxn._endatione for further study.
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I. Kalman Filters, MMAE and Simulation Coordinate Frames

2.1 Introduction.

This chapter presents the basics of Kalman Filters (KF's), Multiple Model

Adaptive Estimation (MMAE) theory, and a description of the coordinate frames used

in this simulation. The theoretical basis and derivation of KF's has existed for a long

time and thuo will not be rigorously developed. Much of this chapter's material is

taken from the excellent work from previous theses [1,3,4,9,34]. The elemental filters

within the MMAE algorithm are based on the theory presented in the KF section.

The MMAE section will essentially be taken from Herrera [9] and Maybeck, Volume

]I, Section 10-8 [17]; the reader is asked to consult these references for further

clallfication of any ideas that are not made completely understandable.

2.2 Kalman Filter Theory

2.2.1 Introductio. The KF is a recursive optimal data processing

algorithm. It is recursive in that the same algorithm is used over and over using the

enti'c time history of data. This algorithm is optimal if the system can be

represented by a linear system model driven by white Gaussian noise. The KF



estimate is constructed from a mathematical model that propagates an estimate over

a measurement sample period. The model is started from some known initial

condition mean value with a known initial covariance. The initial statistics are

represented by the following equations:

E x(t)} =,to (2.1)

SE { [X(to) - '][X( - g]} po P(2.2)

where the notation (A) indicates an estimated value and E( ) is the expectation or

ensemble average of possible outcomes. A variable is displayed in boldface lower case

characters when representing a vector quantity; a matrix is denoted by boldface

capital letters. At each sample time an update is performed by the filter using the

measurement, the predicted state estimate, and a computed gain. The filter then

propagates this estimate to just prior to the next sample time, when the next update

is performed. Statistics (expected value and noise strength or covariance) of the

diiving white Gaussian noise and the measurement noise must also be known a

prori.

The KF receives measurements at a certain sample rate and propagates the

state conditioned upon the measurement time history Z(t ), which is given as:

where z(Q is the me.gurement data available at sample time t. The conditional

mean and covariance of the tate variables are given by:

2-2



z(t2)

-Z(t) (2.3)

z(tj)

where z(tj) is the measurement data available at sample time tj. The conditional

mean and covariance of the state variables are given by:

=(ti) - E { x(t) Z(t = Z, ) (2.4)

tj) = E [x(Q - ,(t1')]R(t )x,:(JTZ(t)= z, , (2.5)

where Z is a realization or observed set of values of the measurement history t ).

An important feature of the KF is that it provides a measure of how well it is

doing the job of estimating the real world. This is through its residual: the difference

between the actual measurement and the filter's best prediction of that measurement

before it arrives. If this residual value is large, the filter is not estimat~ig real world

conditions very well. This property of the filter is exploited in the MMAE scheme,

as will be seen in Section 2.3.

2.2.2 Linear Kahmam Filter. The mathematical model that is used for the

basis of a linear Kalman Filter (LiJ) is of the form:
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i(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.6)

wbere:

F(t) = Homogeneous system state dynamics matrix

x(t) = State vector

B(t) = Deterministic input matrix

u(t) = Deterministic control input vector

G(t) = Driving Poise input matrix

w(t) = White Gaussian driving noise vector

The mean and strength of the white Gaussian dynamics driving noise is given by:

E { w(t)) (0 2.71

E i w(t)w(t+%)T  Q(t)() (2.8)

The linear system described by Equations (2.1) - (2.3) is a continuous-time system

that represents the real world. This real world must be described by a discretized

sys te since the simulation and filter implementation will L, done using a digital

computer. This discrete-time system is dewibed by:

x(ta) 0(t.ti) (t,) + B(t)u(t) + G(t)wd(t ) (2.9)

where:

24



= The system state transition matrix which is defined as an

n-by-n matrix that statisfies the differential equation and

initial condition given by:

dt 
(.0

and:

X(t5) = Discrete-tine vector of states of interest

BA Discrete-time control input matrix

U =t Discrete-time deterministic control input vector

w~ta) Discrete-time independent, white Gaussian noise process,

independent of x(t), with meani and covariance statistics

definvd a&

B wt) (2.12)

E wjjioy I ti- (2.13)0 tj 0 t.
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Qd(--j' (ti+jT)G()Q(r)G(T)T 4(ti4 ,t)T dC (2.14)

The ET incorporates measurements from external measurg devices at each

sample time to improve the state estimate. The discrete-time linear measurement

model is of the form:

z(t) = H(t)x(ti) + v(t4) (2.15)

where:

z(ti) = m-dimensional measurement vector at sample time t

H(t ) = State observation matrix

xtt) = State vector

v(t,) White Gaussian measurement noise

The discrete-time white Gaussian measurement noise v is independent of both zito)

,and w for all times, and has a mean and covariance, R, given by:

1 t v -Q) 0 (2.16)

{v(t)2  ~t) t (2.17)

0 tjt4

The KF propagates the state conditional mean and its covariance from the

instant in time immediately following the most recent measurement update, ti', to the
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instant in time immediately preceding the next measurement update, ti~1" by

integration (accomplished numerically, or analytically by means of state transition

matrices) of the following equations:

i tlt = FQ1tt)(2.18)

P(Mt/t) = F(t)Pl /tj) + P(tt)F(t)T + G(t)Q(tlG(t)T  (2.19)

where the notation (tlti) denotes optimal estimates of x at time t, conditioned on

measurements through time ti, and with initial conditions:

t= .(t1*) (2.20)

P(t/t) -P( (2.21)

where '(ti) and P(ti+) are the results of the previous measurement update cycle. At

time to, ^ and PO from Equations (2.1) and (2.2) are used to initialize the first

propagation.

That update cycle when a measurement becomes available at time t is based

on the following equations:
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K(t = P(tj)H(OtAH(tP(t)H(tj)T + R(t 1
"  (2.22)

#tj) = Rti-) + F'tj)[z(tj) - H(t()] (2.23)

P(ti) = P(ti) - K(tj)H(tj)P(t)- (2.24)

where k(ti') and P(t-) are the result of the propagation integration up to time ti, K(ti)

is the time-varying Kalman filter gain matrix that assigns "weights" to the new

information (consisting of the difference between the actual measurement and the

filter's estimate of the measurement, H(tj)&(t1 ), as seen in Equation (2.23)), based on

known measurement noise statistics and filter-computed covariances.

In some instances (as with the case when pogo is included in the elemental

filter), the discrete-time measurement update is a known nonline function of the

state vector. In such cases, the following nonlinear extended KF update model is

used in place of Equation (2.15). The measurements are modeled as:

2(t) = h1x(tj),t, 1 + Wt1) (2.25)

where h[x(t),t1] is a known vector of functions of state and time, and v(t) is the same

discrete-time white Gaussian measurement noise as defined before. When a

nonlinear measurement is available, Equation (2.22) is still used to determine the KF

gain matrix, but the matrix I/ is defined by:
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The updated state vector becomes a function of the nonlinear residual, [z(ti)-h[(t-),tJ1]

and Equation (2.23) is modified to become:

S(t) = 2(t ) + K(t ){ z(t) - h[g(ti),f]} (2.27)

2.3 Multiple Model Adaptive Estimation

The optimality of the state estimator is dependent upon complete knowledge

of the parameters that define the best model for system dynamics, output relations,

and statistical description of uncertainties [17]. For Kalman filter tracking

applications, maximum performance is achieved when the parameters of the filter

dynamics model match the parameters of the target being tracked. Often, the

parameters are known only with some uncertainty and may exhibit time-varying

characteristics (such as in the case of maneuvering targets with charging acceleration

levels). Thus, there is a need to devise a method that produces optimum state

estimates despite the incomplete a priori knowledge of parameter values, and

provides the estimates in an adaptive, on-line fashion. The MMAE satisfies these

requirements [171.

To implement the MIAE algorithm, it becomes necessary to discretize the

parameter space by the judicious choice of discrete values that are representatively

dispersed throughout the continuous range of possible values. For the tracking
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To implement the MMAE algorithm, it becomes necessary to discretize the

parameter space by the judicious choice of discrete values that are representatively

dispersed throughout the continuous range of possible values. F. he tracking

problem at hand, a target is assumed to be able to display K different discrete sets

of pogo conditions corresponding to one of K discrete combinations of pogo oscillation

frequency and amplitude. As previously shown in Figure 1.3, a Kalman filter is then

designed for each choice of parameter value, resulting in a bank of K separate

elemental filters.

Let a denote the vector of uncertain parameters in a given linear time-

invariant state model for a dynamic system. A system model would be represented

by the following first-order, stochastic differential equation:

) F(a)t) + B(a)u(t) + G(a)w(t) (2.28)

with noise corrupted, discrete-time measurements given by:

Zt) H l(a)zt) + v(t) (2.29)

where:

x t) n-dimensioaul system state vector

ault) r-dimensional deterministic control vector

W(t) = s-dimensional white, Gaussian, zero-mean noise vector

process of Strength Q(a)

z(t1) -- m-dimensional measurement vector
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v(t,) = m-dimensional discrete-time white, Gaussian, zero-mean

noise vector process of covariance R(a)

F(a) = n x n system plant matrix

B(a) = n x r input distribution matrix

G(a) = n x s noise distribution matrix

H(a) = m x n matrix relating measurement to states

Note that F, B, G, H, Q, and R are assumed to be functions (potentially) of the

parameter a, but lid of time t.

The parameter vector, a, is discretized into a set of K finite vector values, a1,

a2, ... , a, and associated with each ak is a different system model of the form given

by Equations (2.28) and (2.29). Each elemental Kalman filter, tuned for a specific ah,

produces a state estimate which is weighed appropriately using the hypothesis

conditional probability P(t ) to produce the state estimate ) as a probability

weighted average, as shown in Figure 1.3, where:

NO,,,,,,(z 1a,A4)PA4,.)
ph(t.) - .......... (2.30)

J-1

exp( -

where:
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i__" - 'k(t)Ak(t) - r(t)}

with:

A# )  = kth filter's computed residual covariance

- ki)Ph(ti- h(ti)T + Rh(ti)

r(t) = kth filter's residual

= [z(t,) - Hh(tj)&h(t,)1

ak = Parameter value assumed in the kth filter

Pk(ti') = kth filter's computed state error covariance before incorporating

the measurement at time tj

z.) - Measurement history up to time ti.1

The residual of the kth elemental Kalman filter, that best matches the current

pogo conditions associated with the parameter value a, is expected to be smaller

than the residuals of the other mismatched filters, so that the exponential term in

Equation (2.31) is smallest for the kth elemental filter. Therefore, the hypothesis

conditional probability given by Equation (2.30) with index corresponding to the

"correct" filter will then be largest among the con litional probabilities, thus assigning

the most weight to the "'crrect" state estimate. This algorithm performs well if each

elemental filter is optimally tuned for best performance for a a",'fc pogo condition,

causing its residual to be distinguishable from those of the mismatched filters. It is

also important not to add excessive amounts of pseudonoise to compensate for model
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magnitude, then Equation (2.30) will result in the growth of the p associated with

the filter with the smallest value of I Ak. The values of I AkI are independent not

only of the residuals, but also of the "correctness" of the K models, and so the result

would be totally erroneous [171. Therefore, the scalar denominator in the right hand

side of Equation (2.31) might be removed in the final implementation of the

algorithm.

The output of the MMAE algorithm is the probability-weighted average of the

elemental filters' estimates, given by:

K
"fn~h AptO0,01") (2.32)

k-I

The conditional covariance matrix for the MMAE is computed as:

P 1") p0(t)[P(4') + AulAt]')r ] (2.33)

where.:
itl = lji Itu"1

=pk(ti = kth filter's conditional hypothesis probability

Pk(ti = kth filter's statV error covariance matrix after incorporating

the measurement at time t,
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Pk(t, ) = kth filter's state error covariance matrix after incorporating

the measurement at time t

Since the values ofph(t) and x^mme(ta ) depend upon the discrete measurements taken

through time ti, Pmuae(ti ) cannot be precomputed as in the case for the elemental

filters. However, Equation (2.30) need not be computed for the on-line filter

algorithm.

The calculated probabilities of Equation (2.30) should be modified by an

artificial lower bound [12,17,31]. This lower bound will prevent a mismatched filter's

hypothesis conditional probability from converging to (essentially) zero. If a filter's

Ph should reach zero, it will remain zero for all time, as can be seen from the iterative

nature of Equation (2.30). This effectively removes that filter from the bank and

degrades the responsivenees of the MMAE to future changes of the parameter values.

If some future pogo condition watched the model for which the Ph was locked onto

zero, that elemental filter's estimate would not be appropriately weighted and the

MMAE estimate would be in error. In previous work, Tobin [41] established a lower

bound of 0.001 for p,(t;). After the lower bound is imposed, the p's are rescaled so

they add to one.
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2.4 Simulation Space

Simulation of the tracking scenario, which encompasses the target trajectory,

the FUR sensor operation, and the low-energy laser illumination of the missile

hardbody and the generation of the speckle return and Doppler measurements, is

performed on a digital computer. A 3-dimensional "simulation space" is generated

wherein a target body and plume are propagated along a realistic trajectory. Several

coordinate frames in the simulation space provide the means of mathematically

projecting the target plume's infrared image and velocity vector onto the two.

dimensional FUR image plane [5,6,27]. In addition, these frames are utilized to

project a representation of the hardbody center-of-mass, as well as to define the start

and orientation of the low-energy laser scan [1] for generating speckle and Doppler

measurements for the filter algorithm. This chapter describes the different

coordinate frames of the simulation space and covers the process of pointing the FUR

sensor at the target during tracking. This section is takta largely fro Herrera's

work [9].

2.41 Coordinate Fmmes. As shown in Figure 2.1, three primary cordinate

frames are defined in the simulation space: a system inertial reference frame, a

target reference frame, and an o-P-r reference fiame. Each of these reference frames

is described in the following partgrapmh.
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Inertial Frame Up
STarget Frame

ev , Wqile Hardbody Oanter-of-Mase East e e

eppv eV Apparent PlumeNot

Plume Intens Cetrold Inest Cnrl

er

hr 2.1 Three Primary Coordinate Fromes in Simulation Space

.2.4. 1. 1 Inoertia Referne Frme. The inertial referenice frame is a North-Up-

East (NU1E) frame wherein the target Rlight trajectory occurs.

Origin: location of the FLIR enrsor

Axes: e,, - due north, tangent to the earth's surface, defines zero

azimuth

e- inertial "up"'

e,-vector completing right-hanid coordinate set, deftnes W3O

aimuth
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Note: The azimuth angle (a) is measured eastward from e.. The elevation angle (f3)

is measured "up" from the horizontal plane defined by e. and e.

2.4.1.2 Target Plume Reference Frame. This frame is located at the target

plume with one of its unit ventors co-linear with the target's true velocity vector.

Origin: plume intensity centroid

Axes: e, - along the true velocity vector

e -out the right side of the Larget, orthogonal to both e, and the LOS

vector ('pv' means "perpendicular to the velocity vector"; note that e, and

e; form a plane parallel to the FLR image plane, to be discussed in

Section 2.4.1.4)

e, - vector completing the right-hand coordinate set

2.4.1.3 a-1fr Reference Frame. The a-f.r reference frame is defined by the

azimuth angle a' and the elevation angle 13" measured with respect to the FLR line-

of-eight (LOS) vector e,. The true azimuth a and the true elevation 13 are referenced

f'em the true north and the horizon. This frame is used to project the targets

position and velocity onto the FUR plane.

Origin: plume intensity centroid

Axe& e, coincident with the true sensor-.to-target LOS vector; e. and eo

define a plane perpendicular to e, rotated from inertial e, and e, by the

azimuth angle (a) and elevation angle (0)
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There are three special coordinate frames associated with the a-f-r reference frame:

the a-P (FUR) plane, the absolute x-3-r reference frame, and the trans-FLIR plane.

2.4.1.4 a-P (FLUR Image) Plane. The FU R plane is used to obtain the

measurements of the target plume position and is the reference frame for the

geometrically derived velocity vector components of the target's intensity centroid.

The FUR plane is defined by the e. and e, unit vectors, with the LOS vector

(orthogonal to the FUR plane) representing the pointing orientation of the FUR

sensor, and the high and low-energy lasers. Note the orientation of the +YFLIR axis

in Figure 2.1, which allows the LOS vector to be positive towards the target, where

it is considered the third member of a right-handed set of coordinates as defined by

the unit vectors e,, e., and e,

Due to the large distance to the target (approximately 2,000 kilometers), small

angle approximations are invoked, allowing the "pseudo" azimuth and elevation

angles, o" and 0%', to be linearly proportional to the x and y artesian coordinates in

the FUR plane. The x and y coordinates are measured in pixels (a pixel of linear

length corresponds to 15 micoradians of arc) and will prvide a means of evaluating

the performance of the K~alman filter associated with Ukacing the intensity centroid

of the target.
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2.4.1.5 Absolute a5-r Reference Frame. The absolute a-p3-r reference frame is

fixed in inertial space at the initial a-13-r coordinates of the target. This coordinate

system defines the initial pointing direction oi the FUR LOS vector er, and is also

used to define the true and filter-estimated target positions and velocity components

on the FUR plane.

2.4.1.6 Trans-FUR Plane. This plane is defined as the result of translating

the center of the FUR FOV to the true center-of-mass of the missile hardbody. The

frame is used to determine the XFLtR and YPLIR coordinate errors of the hardbody

center-of-mass filter's estimates, for performance analysis purpwoes.

2.4.1.7 ALT/ACT (Alo-Track/Across-Track) Plane. This plane, shown in

Figure 2.2, is a rotation of the trans-FLIR plane by the true orientation angle 0t,

formed by the target t-Ajectory with respect to the FUR coordinate plane. It is used

to determine the along-tAck and acros-track components of the tracking error, i.e.,

the mean and covariance of the hardbody center-of-mas estimates [4).

2.4.2 FUR Image Plane. All dynamic events associated with the target plume

intensity "pattern" or "function," and with the active illumination of the missile

hardbody in 3-dimensional inertial space, are projected onto the 2-dimensional FUIR

image plane. The measurements generated as a result of IR detection by the FUR

s o or are provided to the enhanced con'elator algorithm, which produce "pseudo.
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"YranY& - FUR +ALT (along track, and
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True Hardbody
Center-of-Mass

&M FU
+ACT (across track)

0 el. +XFUR

L p

Figure 2.2 FUR Plane, Trans-FLIR Plane, and ALT-ACT Plane

measurements" to the FLIR Kaman filter to update its state estimates. For the

missile hardbody, LEL-generated measurements of the offset distance between the

hardbody center-of-mass and the plume intensity centroid are geometrically projected

onto the FLIR image plane. Thus, the FLiR image plane is tlxe realm ia which the

peiformance of the MMAE filter is evaluated. Also note that it is a natural plane for

such evaluation of a laser weapon, since pointing angle errors are critical and rnge

is not. This section itroduces the FUR Field-of-View (FOV) 'tracking window," and

discusses the construction and projection of the target models.
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2.4.2.1 FLIR Field-of-View. The FLIR FOV, shown in Figure 2.3, consists of

an 8 x 8 pixel sub-array (in the FUR sensor 300 x 500 pixel array) which provides

sensed information as a function of the varying intensity of the plume IR image and

the background and internal FUR noise. Based upon this information, the position

estimates from each six-state FLIR Kalman f. } within the MMAE algorithm serve

to center the centroid of the plume IR image in the FOV. Since the low-energy laser

is boresighted with the FOV, the FUR filter position and velocity estimates of the

intensity centroid define the origin and orientation of the laser scan to "paint" the

Target Plume Formed by
Subtracting 'Trailing' from

"Leading nGaussian
8 x 8 Array Intensty Functioof Variable - { i  ' "'>-'-Intensity Pixels' ( - -, - .: Centroid ot

of V"ariable . /1-" Apparent Target

S, .Intensity Profile

15j rads I

+YFUR

Figure 2.3 Target Plume Image in 8 x 8 FUR Field-of-View
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hardbody. The errors of the FUR filter's estimate of the centroid position and

velocity, and the hardbody center-of-mass filter's estimate of offset, are expressed in

units of "pixels." These errors become meaningful through a pixel proportionality

constant, kp, equal to 15 microradians per pixel [19]. With this constant, 1 pixel

corresponds to approximately 30 meters for a range of 2,000 kilometers.

2.4.2.2 Target Models on the FLIR Plane. The difference of two Gaussian

intensity functions creates a planform that models the hotspot of the plume target on

the FUR plane [191, as shown in Figure 2.3. The "trailing" function is subtracted

from the "leading" function to construct a suitable approximation of empirically

observed plume intensity profiles. The missile hardbody is not sensed by the FLIR

sensor. However, it is geometrically projected onto the FUR pla as a rectangle,

located an offset distance from the plume centroid along the target's velocity vector.

Since the FUR sensor can only detect the IR intensity shape function of the plume,

the remainder of this discussion emphasizes the intensity centroid model. More

about the hardbody model will be presented in Chapter III.

2.4.2.3 Target Plume Model on the FLIR Plane. The radiated energy intensity

from each intensity function is represented as a bivariate Gaussian distribution with

elliptical constant intensity contours. Each of the two bivariate Gaussian intensity

functions has its semi-major axis aligned with the target velocity vector as seen in

the FUR image plane, and is given by [19]:
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-LLX(t)X (t)] = Im8exp[-O.5(,xAy)P '(AxAy)] (2.34)

where:

Ax = (x- Xp.ak)COsOt + (Y- Ypk)sinet, measured along the ALT axis

of Figure 2.2

Ay = (y- Yp.ak)COsOt - (x- Xpeak)sinet, measured along the ACT axis

of Figure 2.2

0, = True target orientation angle between the projection of the

velocity vector and the x-axis in the FUR plane; see Figure

2.2

x, y = Coordinate axes on the a-P plane

Xpeak Ypeak - Peak intensity coordinates of each single Gaussian

intensity function

Ima - Maximum intensity function

P = 2 x 2 target dispersion matrix whose eigenvalues (a,2 and

ap,2) define the dispersion of the elliptical constant

intensity contours

Figure 2.4 illustrates the spatial relationship between the two intensity functions

along the target e, axis. The difference between the intensity functions is the

equilibrium displacement if there were no pogo effect; the "pogo" causes oscillations

about this equilibrium point. The displacement values are based on the assumption
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Intensity Functions Hdby nrV-Mas
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epv
Resultant (Plume)
Intensity Function

Gaussian Displacement Displacement Displacement
Intensity of Centroid of Centroid of Centroid
Function along e v  along epv along e,V

1 - 65 meters 0 meters 0 meters

2 - 110 meters 0 meters 0 meters

Figure 2.4 Spatial Relationship of Target Plume Gaussian. Intensity Functions

that the dispersion of the exhaust plume in the e,, direction (normal to both e, and

the LOS vector) is approximately 20 times the diameter of the missile [19]. With the

dimensions of the hardbody chosen as 40 meters long and 3 meters in diameter, the

centroid of the first intensity function is located 65 meters behind the hardbody

center-of-mass. The placement of the first centroid simulates the composite centroid

of the exhaust plume being close to the missile exhaust nozzle, whereas the position

of the second centroid enables one to simulate different plume shapes. The second,

",ig" centroid is arbitrarily located 110 meters from the center-of-mass, and the
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defined spatial relationship remains fixed in the target frame during the simulation

(should the difference between the two Gaussian intensity functions become negative,

the simulation clips the difference to zero). Any external forces acting on the missile

other than thrust and gravity are assumed negligible, which thus yields an assumed

zero sideslip angle as well as zero angle of attack. These assumptions allow the semi-

major axes of the elliptical constant-intensity contours to be aligned with the

projection of the target's velocity vector onto the FUR image plane, and provides a

simplified simulation geometry while retaining the essential features of the trajectory

simulation.

2.4.2.4 Target Plume Projection onto the FUR Plane. As the target plume is

propagated through inertial space, the output of the FUR pixels is simulated by

projecting the two intensity functions onto the FLIR plane. The geometry of the

projection is shown in Figure 2.5. The "reference target image" is oriented on the

FUR plane to correspond to the largest apparent planform (i.e., with its velocity

vector orthogonal to the LOS vector) at a given initial reference range, ro. As seen

in Figure 2.6, the target intensity image is defined by the dispersion along the

principle axes of the two Gaussian intensity functions, given by:

a..6r (2.35)
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Figure 2.5 Target Plume Intensity Centroid Projection Geometry

a0 = - +. + (a. - rcosyl
(2.36)

where:

aoapo = Initial dispersions of the target intensity functions along e. and

e. in the target frame of the reference image
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(FLIR)
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Figure 2.6 Intensity Centroid Dispersion Axes in FULR Plane

aus oY = Current dispersions of the target img

r. Initial sensor-to-target range of the referenceimg

r = Current sensor-to-target range

V = Initial velocity vector of the target

V = Magnitude of v

=a Prqjection of v onto the a-li plane (FUIR); i.e., the component of

v perpendicular to the LOS vector
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vIs = Magnitude of vaw:

VMaW .[&2 + 02] 1/2 (2.37)

= Target aspect angle between v and the a-3 (FLIR) plane

0 = Angle between vaos and +xFLR

AR = aJ ,o: aspect ratio of the reference image

Referring back to Figure 2.4, the location of each intensity function, or

'"hotspot," is initialized as a displacement from the hardbody center-of-mass. The

intensity functions are oriented in the FIR plane via the true ta ,et orientation

angle Ot. The relative positions of the two intensity functions in the FLIR plane vary

in response to the change in target aspect angle y (Figure 2.6) while the spatial

relationship of the hotspots remains the same in the three-dimensional target frame.

If the plume pogo forcing input is applied, the hotspots do not remain fixed in the

target frame, causing the composite image centroid to oscillate along the velocity

vector and produce additional perturbations to the hotspot image in the FLIR plane

[19].

2.4.2.5 Target Plume Velocity Projection onto the FLIR Plane. The general

discrete-time equation that models the target dynamics is given by:

x(t,) c-(ti ,tj)x(t) + B,(t)u(ti) + Gd(t))wd(t) (2.38)
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where:

4(ti,,t) = System state transition matrix

x(t) = Discrete-time vector of states of interest

B(ti) = Discrete-time control input matrix

u(t) = Discrete-time deterministic control input vector

Gd(t) = Discrete-time driving noise input matrix

Wd(t) = Discrete-time, zero-mean, white Gaussian noise process with

independent components and covariance Qd

Based on the geometry shown previously in Figure 2.5, the projection of the

target's inertial velocity vector onto the FUR image plane is the determinstic input

vector given by [51:

u(t) [&-,(t, I (t,)]T  (2.39)

where:

u(t) = True target deterministic input vector

W(t) = Target azimuth rate in the FUR plane

Y(t) = Target elevation rate in the FUR plane

As seen in the inertial frame diagrams of Figure 2.7, the azimuth can be defined as:

a(t) - [(2] (2.40)
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Figure 2.7 Inertial Velocity FUR Plane Projection Geometry

Taking the time derivative of Equation (2.40) and noting that the senso,-to-tar-et

range is large so that e(t=) e 6(t=), the azimuth velocity in ae FUR plane is given by:

d'(t) (t)- x(t)v,(t) - Z(t)v.(t) (2.41)
x2(t) + Z(t)

where:

Vv,= components of the target's inertial velocity in the e, and e,

directions
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Similarly, the elevation velocity i the FUR plane is given by:

" '(t) =(t) rh(t)v(t) -Y(t)rh(t) (2.42)
r2(t)

where:

V = Component of the target's inertial velocity in the ey direction

rh = Horizontal projection of the sensor-to-target range, with its time

rierivative as expressed as:

X(tVZt) + ZOV.(t) (2.43)
rh(t)

2.4.3 FUR SensorPoizting Conroler The filWr's prvpgated estimates of the

intensity centroid's position dictate the necemay dumge in azimuth and elevation

that the FUR sensor should undergo over the next sample plaiod to center the

hotspot on the FUR FOV plane at the xa.xt measurement sample time. Ideally, these

positional estimates are fed as commands to a pointing controller that physically

imp'lements the directional changes within one sample period (1160 second). The

original iuimple period used in the recent pat for the benign trajectory scenarios has

been 1/30 second. The newer sample period matches the curut hardware and

software being developed at the Phillips Laboratory [1].
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2.5 Summary

This chapter presented the mathematical models of the linear Kalman filter,

the MMAE algorithms, and a description of the simulation space. The linear Kalman

filter is an optimal estimator and constitutes an elemental filter in the MMAE

structure used for the AFIT adaptive tracking system. The MMAE is an adaptive

algorithm that optimally combines the estimates of individual Kalman filters that are

tuned for a specific parameter value.
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HI. Truth Model

3.1 Introduction

A "truth model" represents the designer's best mathematical interpretation of

the real world dynamics as applicable to the system of interest. Such a model is the

product of extensive data analysis, shaping filter design and validation in order to be

confident that it adequately represents the real world, since the performance

evaluation and systematic design procedure is totally dependent upon this

assumption [12). This truth mwiel description should be as detailed as possible,

given the simulation tools available to the designer. A full-scale "Uuth model" that

gives a complete system description of the real world would require an infinite

dimensional state model. This would be compntationaijy impossible on a digital

computer; therefore, the dominant haracteristics of the real worla system to be

modeled must be captured using a finite number of stat The truth model will be

the beinkthtwilb e usc d as the real world in the design of the elemental

Kalman filterm. These elemental Kalman filters are designed by systematically

reducing the truth model w form the filter design model, with this resulting filter

evaluated against the full-state truth nMvel to easure that performance specifications

are satisfied.
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The dynamics of the target intensity centroid's image on the FLIR detector

plane are a result of true target motion, atmospheric jitter due to distorted infrared

wavefronts, bending/vibration of the optical hardware, and pogo effects of the plume's

oscillations. The truth model is composed of the following fourteen states [1,7,22]:

2 target dynamic states (Plume center-of-intensity centroid states)

6 atmospheric states

4 mechanical bending states

2 pogo oscillation states

These dynamis are represented as changes of the image intensity centroid in the

FLIR plane, with the centroid componentax, md y, being meas red in pixels from the

c nter of the FOV in the x and y FUR plane directions. Referrihg to Figure 3.1, the

position of the target image centroid at any one time is given by:

X= XI + X Xb + xPCoso, (3.1)

Ye - Y, + YO + Y6 - BipniO (3.2)

where:

x, Y = Target image intensity centroid coordinates

x,, y, Coordinate deviat~on due to ta-get dynamics

x., yA Coordinate deviatiwa due to atnospheric jitter
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a-P Plane (FLIR)

Centrld

Y.C.

:X +XFUR

8 x 8 Array
of Pixels

+YFUR

Figure 3.1 Plume Intensity Function Pmsition on FUR Image Plane

xh, y = Coordinate ieviation due to bending/vibration of optical

hardware

xp Coordinate deviation due to pogo oscillations along the

velocity vector direction

0, rue target orientation angle

Note the minus sign before the resolved pogo component in Equation (3.2) due to the

coordinate definition of the F LIR coordinate frame. The states x., Xb, x, X, Yo, Yb. and

y, comprise the output position states which are extracted from an overall state model
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in the form of fourteen coupled scalar stochastic differential equations. The states,

x, and Yt, are each modeled by means of first-order differential equations; Xb, Yb, and

xP are each modeled with second-order differential equations; x. and y. are modeled

with third-order differential equations. These differential equations, when in state-

space format, comprise the dynamics portion of the FUR tracker truth model.

3.2 Dynamics Model

The fourteen-state model state vector is described by a first-order, stochastic

differential equation given by:

r W = Fr X(t) + BT Ur(t) + GrWr(t) (3.3)

where:

Fr  = 14 x 14 time-invariant truth model plant matrix

x(t) = 14-dimensional truth model state vector

B7. 14 x 2 time-invariant truth model control distribution

matrix

u7(t) = 2-dimensional input vector

G7 = 14 x 14 noise distribution matrix (Gy I)

w,(t) = 14-dimensional, white Gaussian noise process with mean

and covariance kernel statistics:
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E fw,(t)l = 0
(3.4)

E {wT(t)w(t + V)T I = Q, (t)

To simulate the target dynamics model on a digital computer, the "equivalent

discrete-time" solution to Equation (3.3) is given by [161:

x,(t+) = X(.t (t1) + BMUrN (t) + GM WM ((t1)

where the state transition matrix 0T(t,ti) is the solution to the differential equation:

dOT (t,t1

4)- Fr ( 0  (3.6)dt

with the initial condition: 4 7(tj,t,) = I, (note that, for constant FT, 0T4t,ti) can be

expressed as 07(ttl) ) and:

x(ti) = 14-dimensional discrete-time truth model state vector

Bu = 14 a 2 discrete-time truth model control distribution matrix

u2(t) 2-dimensional discrete-time input matrix

G7 = 14 x 14 noise discrete-time noise distribution matrix,

(G7=I)

w2A)(t 14-dimensional discretc-time, white Gaussian noise process

with mean and covariance statistics:

E {wrt=)} = 0 (3.7)
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E w,,d (tj)wT~ (t1) I =QUd

t$1

= f ®T(t ,. r - 1G Q T l , (t,, -7 
(3 .8 )

where QT is defined in Equation (3.4). The discrete-time input distribution matrix

BTd is defined as:

91.1

B. f0 . - )B d (3.9)

Note that this computation assumes u7(t) is constant over each sample period:

ut7 ()=uTd(t i) for all t & [ti, ti 1). This input simulates a true constant inertia, velocity

trajectory for the missile.

The fourteen states of the discrete-time truth model are defted in the x and

y coordinate axes of the FUR plane as:

X~R = 1 target state (Plume intmity centroid), 3 atmospheric

states, 2 bending/vibration statew

1 target state (Plume intenSity centivid), 3 atmospheaic

states, 2 bending/vibration tates

V," Two plume pogo tates (position and velocity)

*In the FLIR plane except in the direction of the missile velocity vector.
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These fourteen states are augmented together into the truth model state vector:

xt

xa

XT = (3.10)

x
XP

where:

x = 2-dimensional target dynamics state vector

x = 6-dimensional atmospheric state vector

Xb = 4-dimensional bending/vibration state vector

x, = 2-dimensional plume pogo state vector

The 14 x 14 discrete-time truth model state transition matrix, 02, is gih ai by:

Ot 0 0 0

0 0 0 0

0 0 0  0

0! 0 0 10
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where partitions correspond to the dimensionality of the states defined above. The

14 x 2 discrete-time truth model distribution matrix BTd is given by:

Bra = ... (3.12)

where Bd is a 2 x 2 discrete-time control distribution matrix. The 14-dimensional

discrete-time truth model white Gaussian noise process WU is given by:

0

WO,
W3 .. (3.13)

wed

where:

w(t) 6-dimensional discrete-time, white Gaussian noise related to

atmospheric jitter states

wW(t) = 4-dimenisional discrete-time, white Gaussian noise related to

bending states
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Wd(t) = 2-dimensional discrete-time, white Gaussian noise related to

plume pogo states

The block diagonal form of Equation (3.5), as seen in Equations (3.10) - (3.13), allows

the models for target dynamics, atmospheric jitter, bending/vibration, and plume pogo

to be presented separately. The following sections discuss each of the discrete state

models which form the stochastic discrete-time truth model.

3.2.1 Target Dynamics State Description. As depicted in Figure 3.2, the a-P

plane (FUIR image plane) is coincident with the FUR sensor FOV, and perpendicular

to the LOS vector er. In the simulation, the 3-dimensional target dynamics are

projected onto the FUR image plane, and the position components of the target's

intensity centroid ae obtained from the azimuth and elevation displacement angles

(WC and 03. Since the target distance is simulated as 2,000 kilometers, small angle

approximations are used for measuring the angle displacements in the cartesim

coordinate system of the FUR image plane. Thew, "pseudo" angles, a' and P', me

Euler angles referenced from the current LOS vector and measured in microradians.

The order of calculation using Euler angles would normally be critical, but large

distance, hence small angle approximation (sina'=d and cowo.1) ovenides this

constraint. Note that the unusual orientation of the 4yju, axis in Figure 3.2 allows

the positive z axis to be in the positive er direction (by the right-hand rule).
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(FUIR)

Up 
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East +YFUR

Figure 3.2 '1rarget Centroid Image on o-0 Plane with "PseudolAngles

The linear txanslational coordinates, x, and y(, of Equations (3.1) and (3.2),

locate the target intensity function on the FUR plane and ame measured in pixels of

displacement fr-om the center of the rUR FOV. The angular and linear

measurements ame related by the pixel proportionality constant k,,, which is the

angular FOV of a single pixel. Presently, the value of k,, is approximately 15

microiadians per pixel for long range targets 13,34].
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The derivation of the state space model of the target dynamics assumes that

the azimuth and elevation rates (6' and 0Y, respectively) remain essentially constant

over each sample period At. Then the discrete-time target dynamics model is:

x;,(ti-) = x(t) + (a")(At (3.14),

y ) y(,) - ( A) (3.15)
k

Arranging these equations in state space form yields:

it (t1~1) 4 i, ~(Q + B (ti)( (3.16)

+ (,.t (3(t1) 6)7 + jk ; (3.17)
where:

al(ti) = da'/dt, meaured in microadiandsecond and consaant over the

time interval A

Olf() = d'ldt, measured in microradiandsecond and constant over the

time interval At

At = Sample time interval. ti., - t, (1/60 second)

k = Pixel proportionality constant (16 microradian/pixel)
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Using these relationships in block form of the overall truth model, by inspection of

Equation (3.11), the upper left block is:

¢ 101 
(3.18)

and the upper block of Equation (3.12) is:

At

(3.19)

with the input vector in Equation (3.5) given by:

uW = '(t4)1 (3.20)

The minus sign of the lower right term in Equation (3.19) is due to the difference in

the y axis orientation between the inertial coordinate frame and the FLIR coordinate

plane.

The two target dynamics states of Equations (3.10) are used to propagate the

missile along its tajectory. The input angular velocity values of & and ° are

computed and included in the solution to Eqi.ation (3.17) so as to cause the

simulation of inertial constant velocity target tAjectory, as projected onto the FLIR
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image plane. The formulation of these truth model target dynamics states in

deterministic state space form has two advantages. First, Equation (3.17) can be

substituted back into Equation (3.5) to form a single augmented vector difference

equation that defines the truth model. Second, the state space form allows the

addition of white (or time-correlated) noise to Equation (3.17), if a stochastic, rather

than a deterministic dynamics model, is desired.

3.2.2 Atmospheric Jitter Model. The model for the translatinal displacement

of the intensity function due to atmosphoric disturbancis is based on a study by The

Analytic Sciences Corporation [26]. Physically, atmospheric disturbances cause

infrared radiation phase front distortions, which, when brought through the optical

system, result in apparent translational shifts of the target Using power spectral

density characteristics, the atmwphericjitter phenomenon ii each FIUR plane axis

direction can be modeled as the output of a third-order shaping filter driven by white

Gaussian noise (26]. The Laplace domain representation of the shaping filter tranfer

function is given by:

x o(S) _ _ _ _ _ (3.21)

W() (s t)1)(S *

where:

x = Output of shaping filter (xn R direction)

w = Zero-mean, scalar, uni txenth white Gaussian noise

K = Gain, adjusted for desired atmospheric jiuer nis value
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= Break frequency, 14.14 radians/second

0 2  = Double-pole break frequency, 669.5 radians/second

The a'mospheric jitter effects can be modeled similarly in the YFLIR direction,

where y. would be the output of an identical shaping filter to that defined in

Equation (3.21). The two shapingfilters are assumed to be idependent of each other

and can thus be augmented '1 form a six-state model. The linear stochastic

differential equation that describes the atmospheric jitter is given by:

94 = Fa X4( W GoW(O (3.22)

where:

F, 6 Y 6 time-invariant atmospheric jitter pInt matrix

4)M 6-dmonsional atmospheric jittear stAte vector

G. 6 x 2 noise disaibutionmatrix

uimt -5teqth and iwdupndent componets &dscbed

344



The six atmospheric states in the state vector correspond to the low frequency pole

and the higher frequency double pole in each of the xFLI and the yFm directions. The

atmospheric jitter plant matrix is defined in Jordan canonical form as:

-WI 0 0 0 0 0

0 -02 1 0 0 0

0 c 0 -Ca) 0 0

0 0 0 0 -(2  1

0 0 0 0 0 -o

The roise distribution matrix G. is:

20

(O l - (0)2

2 0

2 0
(- 1 2)

6d N (3.25)
0 K 2

02

(0) - O2)

K 2
0 401(02
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The equivalent discrete-time model for Equation (3.22) is of the form:

x 0 ) = (D (t)X (t) + wad(t) (3.26)

The augmented six-state state transition matrix derived from the time-invariant

plant matrix of Equation (3.24) is [26]:

0 ¢2 ' a  0 0 0

0 0 ¢a3 0 0 0

0 0 0 €a 0 0 (3.27)

0 0 0 0 Oa,5 ,0 6

0 0 0 0 0 Oa,

where:

(D=22 = exp(-At)

4),23 = (DO66 = A exp(-( 2At)

(D33= D. = ep-±t

At = sample time interval, (t,. - t)
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The 6-dimensional, zero-mean, discrete-time, white, Gaussian noise wd(ti) has

statistics defined as:

E I w (ti) = 0

E { wa (t)wd (t)T I = Qd

h., (3.28)

- 0, Q4 G 0~ T -tJ

The individual components of Qw are not included here due to their length and

complexity. The reader may refer to the software for a full description [25].

For the approximated two-state atmospheric jitter model for use in the filter

development, only a single-pole shaping filter is used in each direction to produce the

arproximated Power Spectral Density (PSD). The state space equations are

truncated from six to two otates with only the first break frequency, ", used in each

direction. The plant matrix in Equation (3.24) becomes a 2 x 2 with -oJ as the

diagonal terms and Equation (3.25) also becomes 2 x 2 with K" on the diagonal.

!.2.3 Bending/Vibration Model. The mechanical bending states were added

to the truth model to account for the vibrational effects in the FUR data that occur

when the sensor is mounted on a moving, non-rigid optical platform (12]. Based on

tests at the AFWL (now Phillips Laboratoiy), it was concluded in previous research
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[12] that bending effects in both the xFL and yFLn direction can be represented by a

second order shaping filter, driven by white Gaussian noise. The Laplace domain

transfer function for each of these bending models is:

_ Kbw 2

Xb(S) 2 (3.29)
Wb(8) S2 + +

where:

Xb = FLIR plane positional offset (xFLm direction) due to mechanical

bending disturbance

Wb Zero-mean, unit strength, white Gaussian noise

Kb = Gain adjustment to obtain desired rms bending output; Kb= 5

x 10"13

(Note: K6
2 is given here because the strength of the bending white

noise is expressed in terms of this parameter, rather than Kb)

= Damping coefficient, equal to 0.15

0b = Undamped natural frequency for bending, (--n rad/sec)

The FLUR plane positional offset in the ypulz direction, Yb, is identically modeled

with the shaping filter defined in Equation (3.29). The two shaping filters are

assumed to be independent of each other and can thus be augmented to form a four-

state mode. The linear stochastic differential equation that describes the

bending/vibration is given by:
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FbXb(t) + Gb b (t)W (3.30)

where:

Fb - 4 x 4 time-invariant bending plant matrix

xb(t) = 4-dimensional bending state vector

Gb - 4 x 2 noise distribution matrix

wb(t) = 2-dimensional, white Gaussian noise process with unit strength

components that are independent of each other:

E {wb(t)) =0

E {wb(t)wbQ+)r Q,8(v) [I0]6(r) (3.31)

The bending/vibration plant matrix is defined as:

0 1 0 0
24 _

-W -2Cb.nb 0 0
o 0 0 1 (3.32)

0 0

I

(4A= 0(3.33)

0 0o~o 3
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The equivalent discrete-time model for Equation (3.30) is of the form:

Xb (t0.) = b (t pt)Xb ( 1) + Wbd( 1) (3.34)

where:

"b11 Wb12 0 0

b00 iot 0 0 (3.35)

0 0 OW Ob4

and:

Ob3 = 63 = exp('ObAt)[cos(bAt + ((Ob)sin(WbA)]

OWJ2 = 4)&w = exp(-obAt*)[(I/b)sin((qtA)]

OJ = (,W = - exp(-bAt)[(O)sin(C~bA)1

O = 4w4 = exp(-abt)[CO((b), (oo)sin(o 6At)]

At Sample time interval, (t1.1-ti)

b = Real part of the root of the dwacteristic equation in Equation

(3.29), (Orb = 0.47124 second ")

b = Imaginary part of the root of the characterite equation in

Equation (3.29), (q = 3.10605 radians/second)

The 4-dimensional, discrete-time, white Gaussian noise process vector wQ(t ) has

mean and covariance statistics:
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E b (iwd (t?} =

p5.1 (3.36)

O- f(ti., - Z) Gb Qb G;0 b~~

3.2.4 Plume Pogo Model. To account for the oscillatory nature of a typical

missile plume in the hebo phase, a plume pogo model was developed [34.. A second-

order Gauss-Markov model was generated using physical insight, and visual

observation of the pogo phenomenon. The model allows for the study of the

amplitude and frequency chuateristics of the oscillatory nature of the plume, and

of the effect upon tracing a misu a Kalman filter.

The tranafir function of the plume pogo model is described in the Laplace

domain as:

2

2 (3.37)

where:

x = Plume pogo shaping filter output along the direction of the

velocity vector

wp Zero-mean, unit strength, white Gaussian noise
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, = Assumed damping coefficient, (C = 0.05)

p = Nominal undamped natural frequency for pogo; assumed range is

0.1-10 Hertz, with a nominal value of 1.0 Hertz

KP = Gain adjustment to obtain desired rms pogo amplitude

determined by [40]:

K =2 a(3.p?)

where:

U = Desired rms pogo along the velocity vector

The linear stochastic differential equation that describes the plume pogo is given in

state space form as:

=, W 2 + (W (3.39)

where:

xp(t) = 2-dimensional pogo state vector composed of pogo position and

velocity states

w(t) = 1-dimensional zero-mean, white gaussian noise with statistics.

E {w((0) 0
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The equivalent discrete-time model for Equation (3.39) is of the form:

Xp01.l) = Op(0, ,.,,) V(11) + wE(,0) (3.41)

x,(t ) t),)] Xp(t) + Wpd (ti) (3.42)

where:

OXI t +t) ~

4102W) 1e P( VA *OIpF t - ?,AIca1

(3.43)

The 2-dimensional, discret-time, white Gaussian noise process wAlt ) has mean and

covariance statistics:
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E IW,pd(0) =0

E {W~d (tj)WPd (tf)T } 2 Q
,5., (3.44)

f- P(t+ - ic)Gp Q.G IrpO7(i. - Td

The 2-dimensional pogo state vector defines the position of the plume image

intensity centroid relative to the equilibrium point of oscillation, and its velocity

component due to the pogo phenomenon along the longitudinal axis of the missile.

For the simulation, it is assumed that the velocity vector lies coincident with the

longitudinal axis of the hardbody. As shown in Figure 1.6, the plume oscillates about

an equilibrium point also located on the longitudinal axis. This equilibrium point is

defined by the initial positions of the two intensity functions in the target coordinate

frame (to be discussed Section 3.3.1), and remains at a constant distance from the

hardbody center-of-mass throughout the simulation (the spatial relationship of the

intensity functions can be seen in Figure 3.3 in Section 3.3.1). The crescent-shaped

plume represents one of many equal-intensity contour lines of the actual plume. The

angle of attack and sideslip angle of the missile are also assumed negligible, and have

zero values for the simulation [34.
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3.3 Measurement Models

It is crucial for a simulation tool to have accurate models concerning the

measurement updates to be used. These models must be products of experience in

using the actual physical devices, tempered with the reality in dealing with computer

simulations similar to this research thesis. There are two different measurement

models that are used in this research. The first model is the measurement update

from the FUR 8 x 8 tracking window receiving radiation from the plume intensity

centroid. This update comes from compaking (in an enhanced correlation algorithm)

the truth-model-generated measurement with the template that is generated from the

state estimate of the previous sample period. This correlator then produces a

"measurement" that goes to the Kalman filter bank as a 2-dimensional vector, x, and

y0, as the offset necessary to provide the highest correlation between the data and the

template in the (x-P (FLIR) plane coordinates.

The second measurement is generated with returns from the Low-Energy Laser

(LIL) that uses the updated estimates from the FLIR measurement to "paint" the

hardbody target using the filter generated plume centroid coordinates as a starting

point. The LEL illuminates along the filter-estimated velocity vector to locate the two

endpoints of the missile hardbody. These endpoint coordinates are then used to form

a noise corrupted "center-of-mas " one-dimensional LEL measurement update.

Section 3.3.1 describes the FUR update while Sections 3.3.2 and 3.3.3 detail the LEL
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update along with the Doppler effect in the returned signal that is used to determine

where the endpoints of the hardbody are located.

3.3.1 Flir Model. The FUR sen&r model is composed of an 8 x 8 pixel array

"tracking window" extracted from the total array of 300 x 500 pixels. The missile

plume is projected onto the FUR focal plane, with its characteristic crescent-shaped

intensity function formed as the difference of two bivariate Gaussian intensity

functions (the difference is clipped to zero if negative), as shown in Figure 3.3. This

a-P Plane (FUR)

V
Taret te omodby,
SublisdU g "Wt8Inb"W o

*LW n aiUGp" -x~.~
hIe Ity RRInUOW..

~~+XJ

Plni -i ns Centroid

8 x 8 Ay
Ox8Axry 

________ 
-YU

of Variabe

Figu re 3.3 Composite Plume Inensity Fuwtion on FUR Plane
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model depends upon knowledge of several parameters: the size of the major and

minor axes of the elliptical contours of each bivariate Gaussian function, and the

orientation of the principal axes in the FUR image plane (the major axis of each

ellipse points along the velocity vector in the FUR plane). The target intensity

function so obtained is corrupted by spatially correlated and temporally uncorrelated

background noise and spatially and temporally uncorrelated internal FUR noise,

according to models of actual data taken from a FUR sensor looking at various

backgrounds [32].

For each pixel in the FIR FOV (the 8 x 8 array "tracking window"), the

target's intensity function, correlated background noise, and FUR internal noise are

added together to produce an intensity measurement. For the 8 rows and 8 columns

of the FOV, the intensity measurement corresponding to the pixel in they row and

k' column at sampling time t, is given by.

f 01

4 3.46)

.A$ + *&

where:

zA(t) = Output of pixel in thej' row and k' column

A, = Area of one pixel
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1,2 = Intensity function of first and second Gaussian intensity function,

respectively, of Figure 3.3

x, y = Coordinates of any point within pixeljk

xP1 , ypa = Coordinates of maximum point of first Gaussian intensity

function

Xpeak2, Ypftk2 = Coordinates of maximurm point of wcnd Gaussian intensity

fumction

njk(t,) = Effect of internal FUR sensor noise on jk pixel

bjh(tI) = Effect on spatially correlated background noise onjk pixel

The sensor error, nj*(t,), is the result of thermal noise and dark current in the

IR detectors (pixels). This error is assmed to be both temporally and spatially

uncorrelated [341.

The background noise, bA(t), was observed in the FLIR data by AFWL

personnel during a tracking operation 18]. It is repres ted as a spatially correlated

noise with radial synmetry, with acorrelation that decays exponentially. Handy and

Jenwen (8] concluded that spatial cornlation can be depicted as a conelation distance

of approximately two pixels in the FLIR plane, and simulated Ly maintaining non-

zero conelation coefficients between each pixel and its two closest neighbors

symmetrically in all directions. In that two-pixel distance, the correlation decays

exponentially to one-tenth of its peak value.
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The generation of spatially correlated white Gaussian noises is accomplished

by allowing non-zero cross correlations between the measurement noises, bh(tj),

associated with each of the 64 pixels from the 8 x 8 piyel FUR FOV. The correlated

measurement noise in Equation (3.45) is given as:

b(i) = 64-dimensional vector of spatially correlated noise with statistics:

E { b(t)} = 0
(3.46)

E { b(t)b(,)T } = R 69

where R is a 64 x 64 measurement noise covariance matrix and 6, is the Kronecker

delta, defined to assume the value of one if i = j and zero otherwise. This matrix

describes the spatial correlation between pixels, and is given by [13]:

1 r r2,3  ... r2

R r r3, 2  1 ... r3& (3.47)

r6, r64 r, 3  ... 1

where aR' is the variance of iach scalar noise and the correlation coefficients r,,k are

evaluated to reflect the radially symmetric, exponentially decaying pattern. The

spatially correlated background noise L %t1) is simulated as:

b( = CR b '(0  (3.48)

where:
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cf" = Cholesky square root

b'(ti) = 64-dimensional vector of readily simulated discrete, independent

white Gaussian noise with statistics:

E{ b'(t)} = 0
(3.49)

E { b(t)bFT(tj)1= I

3.3.2 Low-Energy Laser Speckle Reflection Model. The low-energy speckle

reflection model evolved through the work accomplished by Eden and Evans [3,41.

The model makes no attempt to simulate the detailed physical phenomena associated

with the speckle return of the reflected laser from the plume or hardbody. Rather,

the model simulates the reflectivity information from the hardbody speckle return

which would be derived by speckle detection circuitry.

The low-energy laser specklo reflection model simulates a linear measurement

to the Kalman filter for estimating the offset distance from the plume intensity

centroid to the hardbody center-of-mass along the vehicle's FUR image plane velocity

vector. The first attempt to model the laser speckle return consisted of the hardbody

represented as a rectangle with a binary-valued reflectivity function, which provided

a binary indication of the hardbody whenever successful interception by the laser

beam occurred (3]. With this model, speckle reflection information was equally

obtained over the entire vehicle. This was followed by an enhanced, 3-dimensional
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reflectivity model which accounted for the realistic distribution of the laser speckle

return according to the curvature and aspect angle of the hardbody [4]. The 3-

dimensional model is employed for this research since the Doppler return is also a

function of reflectivity [9,38,39,44]. The following subsections discuss the

development of Evans' 3-dimensional hardbody reflectivity model and introduce the

plume reflectance model.

3.3.2.1 The Hardbody Reflectivity Model. The 3-dimensional reflectivity model

was developed by Evans [4] based upon his analysis of empirical data obtained from

the 6 585 th Test Group, Holloman AFB, New Mexico [5]. The data illustrates the

return power (expressed in decibels-square meters) as a function of radar cross

section (RCS) from a 20 x 249 inch cylinder with hemispherical endcaps as it was

rotated longitudinally in the plane of the radar source. RCS is defined as the

projected area of a metal sphere which would return the same echo signal as the

target, had the sphere been substituted for the target [38]. The data showed peak

values at 900 and 2700, where the cylinder was orthogonal to the line of sight, and

sharp dropoffs in reflection as the angle deviated from the orthogonal condition. The

reflectivity model, shown relative to the FUR image plane in Figure 3.4, modifies the

previous rectangular model to include 29 discrete weighted line segments in the true

velocity vector direction along the length of the model. Two functions define the

hardbody reflectivity model: the cross sectional function and the longitudinal function,
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Figure 3.4 3-d Hardbody Reflectivity Model Relative to FUR Image Plane

Each discrete weighted line represents a cro-sectional reflectivity function

which duplicates the empirical data from Holloman. The reflectivity function models

the curvature by defining the strength of the reflected signal at each discrete line,

where the amplitude of the reflected rignal is highest along the missile centerline and

discretely tapers towards the hardbody sides in 0.1 meter increments. The discrete

implementation of the cross-sectional reflectivity function for the simulation is shown

in Figure 3.5. Note the peak reflection of the cross-sectional reflectivity function's

center is represented by an arbitrary value of 50 units of reflection magnitude [4).
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Hardbody Centerline
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Figure 3.5 Discrete Implementation of Cross-Sectional Reflectivity Function [9]

The remaining line segments are scaled accordingly to match the empirical data. The

Rflectivity function also yields zero or significantly reduced reflection for those

portions of the original rectangle far from the missile centerline, so the effective area

of the hardbody is less than that of the binary model.

Note that, in Figure 3.4, v, is the true velocity, not necessarily in the FRI

image plane, and vam is its component in the FUR image plane. The angle y,

defined as the angle between the inertial velocity vector and the FUR plane, is
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utilized by the longitudinal reflectivity function to provide a scaling factor of the total

reflection function if the missile centerline is oriented other than normal to the FUR

plane. Similar to the cross-sectional reflectivity function, the longitudinal function

assigns a scaling factor to the reflected signal based upon the angular aspect of the

target velocity.

Another factor in determining the received speckle reflection is the sensitivity

level of the low-energy laser sensor. This sensitivity is represented in the simulation

as a threshold limit below which the low-energy laser sensor cannot detect the

reflection return. To illustrate the function of the sensor sensitivity factor, consider

the hardbody at an aspect angle y relative to We FUR image plane. In this

orientation, the maximum amount of reflection is obtained i the simulation by

multiplying the peak reflection value (50 units of magnitude) by an appropriate

scaling factor [4]. The sensitivity threshold function 14) is defined as a function of

a threshold reflection magnitude m. If a reflection magnitude is less than m, the

reflective output is clipped to zero (see defining equation for ti() in the next

paragraph). Therefore, t(.) represents the sensor's ability to discern a target's return

signal (4).

The total reflectivity function is given by [41:
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RT p 4F~) (3.50)

where:

RT Total reflectivity received by the low energy sensor

n = Number of line segments crossed by laser scan

!' = Sensitivity threshold function of low-energy sensor:

AXo = {oif x >"

10 fx<M,

A, Cross-sectional reflectivity function's reflection amplitude of the

it' discrete line segment

F(T) Longitudinal reflectivity function, where T is the angle between

target v, and the a-P plane

As the hardbody traverses along its trajectory in 3-dimensional inertial space,

the projection of its motion. onto the 2-dimensional FUR image plane generates the

corresponding propagation of the first two states in the truth model. Similarly, to

simulate the center-of-mass measurements in terms of FUR plane variables, the

hardbody models are also projected onto the 2-dimensional FUR plane. Referring to

Figure 3.6, the geometry for projection is described by:

MlW = ML coCWY (3.51)
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Figure 3.6 Projection Geometry onto FUR Image Plane

where:

MLzJ = FIR plane projection of missile length

IML ,w= True mimile length in pixels

Y = Angle between v, (velocity vector of the target) and the

FUR plane

Similarly, since the hardbody longitudinal axis is assume" to be aligned with the

velocity vector (along which the offset is aligned), the offset between the hardbody
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and the plume is scaled by the same factor when projected onto the FUR plane.

Once the projection is accomplished, the hardbody is located on the FUR plane by

offsetting the hardbody's center (midway between the projected endpoints) from the

truth model intensity centroid along the truth model velocity vector, Vws, by [(Offset

distance a)cosy].

The subtended arc of the low power laser beam is simulated as a rectangle

with the smaller side represented as the finite width of a dithered laser beam after

it has traveled 2,000 kilometers. Shown in Figure 3.7 are the ideal conditions for the

laser scan. (Generally, the filter estimates of the intensity centroid position, the

orientation angle, and the velocity vector are not equal to the truth model values.)

One end of the long centerline of laser scan rectangle is located at the estimated

intensity centroid, positioned a, the center of the FUR FOV. The other end of the

laser scan rectangle is taken as three times the truth model offset distance between

the intensity centroid and the hardbody center-of-mass (3 x 87.5 = 262.5 meters or

8.75 pixels) to ensure the laser scan is long enough to intercept the hardbody, despite

the effects of "pogo." The second endpoint of the laser rectangle along its centerline

is given as:

x x e + L c sO , (3 .5 2 )

yp = ye - L sinO

where:
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3-d Hardbody Rectangle
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Filter Estimate of
Intensity Centroid

Figure 3.7 Ideal Low-Energy Laser Scan

xP, = FLIR plane coordinates of the second end of the centerline of the

laser rectangle

xO, yO = FLIR plane intensity centroid coordinates

L = Length of the laser rectangle

O = Six-state (FLUR) filter estimate of velocity orientation angle

As mentioned earlier, the FUR filter's imprecise centering of the intensity

centroid caused inadequate hardbody illumination rates by the laser scan in the

3-38



original research by Eden [3]. (The estimated velocity - -tor, and thus the estimated

orientation angle, Of were estimated precisely, how , er.) As a result, an ad hoc

sweep routine was developed, shown in Figure 3.8, thy'., offsets the initial laser scan

cdockwise from the estimated velocity vector. The laser scans are swept

counterclockwise in order to assure illumination of the entire body. Evans found

that, without pogo, a 300 offset was required, and 350 with pogo applied [4].

"YFL': Vt
Center-of-Mass e t

3dH dbody Rectangle
True .Loation of ''

OffsetAnglef

• I :+X FU R
' s I

,. Filter Estimate of
Intensity -entrold

Figure 3.8 Sweep Techniques of Laser Scan
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3.3.2.2 Plume Reflectance Model. Prior to Herrera's research [9], the concept

of illuminating the missile hardbody with a low-energy laser and analyzing the

speckle return (also called backscatter radiation) was predicated upon the assumption

that the missile plume would not possess a speckle return similar to the hardbody's,

when illuminated by a low-energy laser. The laser scan travels along the intensity

centroid's velocity vector until a speckle return is received, signifying the start of the

metallic hardbody. The scan continues along the hardbody until no backscatter

exists, signaling the end of the hardbody, and thus information is provided to

calculate the center-of-mass. However, experimental data confirmed the presence of

reflectance from solid-propellant rocket motors [29] which significantly alters the

previous conception.

Experimental programs at the Arnold Engineering and Development Center

(AEDC), in Tennessee, have observed and measured laser backscatter radiation from

the exhaust plume of a solid-propellant rocket motor (29]. The measurements of the

plume's backscatter radiation were found to be on the same order of magnitude and

comparable to that of a hardbody [1], due to aluminum particles and other substances

in the plume. During the STARLAB flight experiment, which collected plume data

under actual flight conditions, - rocket booster and its exhaust plume were "painted"

by a low energy laser. Video recordings of the flight experiment showed the

randomized appearance and low-frequency oscillation of the plume's reflectance [1].

The existence of plume reflectance creates an ambiguity that impedes the precision
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trzicking necessary to define the plume/hardbody interface. The plume reflectance

causes a bias in the estimated hardbody location, biased longitudinally toward the

plume.

Since for this thesis, the Doppler measurement model was utilized instead of

speckle, the offset measurements from the LEL were assumed to be unbiased (see

next section). However, this section has been included in the thesis description for

continuity and, since the bias effect is still implemented in the software if the speckle

return model is used, it is retained as reference for future researchers.

The purpose of the plume reflectance model is to simulate the presence of

plume backscatter radiation and its effect upon the offset measurement. Figure 3.9

depicts the reflectance from both the plume and hardbody, as observed in the

STARLAB flight experiment. From the viewpoint of the specle return sensor, the

plume reflectance has the effect of elongating the apparent missile hardbody in the

direction c' the plume. The plume reflectance model simulates the hardbody

elongation by applying a bias to the offset measurement in the direction of the

elongation, defined as in the opposite direction of the estimated velocity vector. In

the simulation, the model firt receives the offset measurement as determined by the

low-energy speckle reflection model. The biased measurement, x , is formed by

converting the bias into pixels, projecting it onto the FLIR plane, and subtracting it

from the original offset measurement. The biased offset measurement is then
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pirovidod to the filter for its update. The plume reflectance model is. given by:

Y (3.63)

where.

x4.,O Biased offset measurement due to plume speckle reflectance

X4Offset meaurement from the low-eneW~ rafectivity model,

without plume sped We reflect~ance effect
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b Bias value

R = Range

kp Pixel proportionality constant (15 microradians/pixel)

S = Angle between 3-dimensional inertial space velocity vector a.d

the FUR image plane

The randomized nature of the plume's reflectance is modeled as a percentage

of time that appearance of the bias occurs. A random number generator, of uniformly

distributed random variable output, provides the logic to turn the bias "on and off'

according to the percenage selected. In correspondence with Phillips Laboratory

personnel, it was found that a bias of approximately 25-30 meters with an appearance

percentage of 90 - 95% was observed during the STAPRAB flight experiment [1].

3.3.3 The Doppler Measurement Model. The Doppler measurement model

simulates the offset measurements that are obtained by exploiting the differe.ces

between hardbody and plume-induced Doppler returns. As with the laser speckle

return research of Eden and Evans, the modeling of the actual physical properties of

the Doppler phenomenon will not be attempted. Instead, modeling efforts will entail

simulating the information that would be available from Doppler detection circuits

as measurement data for the Kalman filter. The following subsections briefly

introduce and describe the basic concepts of the Doppler phenomenon, as applicable

to the properties of the hardbody-induced and plume-induced Doppler returns. The
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treatment of the Doppler phenomenon is not intended to be rigorous and reflects the

level of understanding necessary to appreciate the manner with which the Doppler

returns are employed to generate an offset measurement relative to the intensity

centroid. For a rigorous development of the Doppler phenomenon, refer to Principles

and Practice of Laser-Doppler Anemometry by F. Durst, A. Melling, and J. H.

Whitelaw [2], and The Doppler Effect by T. P. Gill [7].

3.3.3.1 The Doppler Effect. Many define the Doppler effect as a shift in the

frequency of a wave radiated, reflected, or received by an object in motion [38,39].

From a radar, Doppler shifts are produced by the relative motion between the radar

and the target. The radar may use a pulsed, coherent laser beam that propagates the

electromagnetic energy to "paint" the target of interest. If the target is in motion and

illuminated by a low-energy laser, the returned signal (or backscatter) is represented

as a time-delayed, Doppler-shifted version of the transmitted signal, wherein the

amount of Doppler shift is proportional to the reflecting target's range rate relative

to the laser transmitter [38,39]. A continuous transmitted signal is given as:

Et = EO cog 2%fot) (3.64)

For this transmitted signal, the echo signal from a moving target will be [381:

where:

Amplitude of transmitted signal
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= Transmitted frequency

I = Reflected signal

k An attenuation constant that represents losses incurred during

propagation

fd = Doppler frequency shift

/b = A phase shift, dependent upon the range of detection

Figure 3.10 shows the frequency spectrum of the return signal, shifted from the

transmitted frequency, fo, by the Doppler shift, fd, given by (38]:

Amplitude
Spectra of Received Signals

-___FreqIencya) No Doppler Shift

Frequency No Relative Motion

~f

-- fo

F- Frequency c) Receding Targetfo

Figure 3.10 Spect of Received Signals, (43
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S±2v,- =2vf 0  (3.56)

C

where:

Vr - Relative velocity of target with respect to transmitter

X = Transmitted wavelength

c = Velocity of signal propagation (3 x 108 meters/second)

The relative velocity, vr, is expressed as:

v. = v siny (3.57)

where:

v Target velocity in 3-dimensional inertial space

Y = angle between the target trajectory and plane perpendicular to

the laser LOS (FlR plane; see Figure 3.6)

The plus sign associated with the Doppler frequency shift applies if ithe distance

between target and transmitter is decreasing (approaching target), and conversely,

the minus sign applies if the distance is inmaing (receding target).

As shown in Figure 3.10, the frequency spe-trum of a continuous reflected

sinusoidal signal appears as a straight vertical line. The scenario proposed by the

Phillips Laboratory calls ror a pulsed and coherent laser beam to illuminate a bWdistic

boosting target [11. Both these laser properties have an impact upon the nsture of

the returned spectrum.
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For illustration purposes, Figure 3.11 shows a train of independent pulses

having a pulse width (PW) of 0.001 seconds and a constant pulse repetition frequency

(PRF), along with its associated frequency spectrum. Because the pulses are "on!' a

fraction of the time, the amplitude of the frequency spectrum decreases but is still

centered at f. The total power is in fact distributed over a band of frequencies

extending from 1000 Hz below fo to 1000 Hz above it, for a null-to-null bandwidth of

2 KHz. The bandwidth (i.e. spectrum spread), is inversely proportional to the pulse

width and is given by [39]:

1/1000 sec (r)

^V V ^~ ^ ̂ A% % ^V A-- WA - Time
H- PRF -

Amplitude 0

f -1000 Hz f + 1000Hz

00

-=- fo

BWnn

Figure 3.11 Pulsed Signal Frequency Spectrum
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BW - 2  (3.58)

where:

BW. = Null-to-null bandwidth

IC Pulse width (seconds)

By coherence is meant a consistency, or continuity, in the phase of a signal

from one pulse to the next (39]. The term in Equation (3.55) represents the phase

shift, which is a function of the range during detection. Figure 3.12 illustrates the

difference between the frequency spectrum of a coherent signal and a non-coherent

signal. With non-coherent transmission, the signal's central spectral lobe is spread

over a band of frequencies. In contrast, the spectrum associated with coherent

transmission shows the signal appearing at many points. Its spectrum, in fact,

consists of a series of evenly spaced lines, wherein the interval between the spectral

lines equals (1/PRF) [39]. Further comparison reveals that the coherent frequency

spectrum is stronger (having a higher amplitude) than the non-coherent signal

because the energy has been concentrated into a few narrow lines. In addition, the

envelope within which these lines fit has the same shape, [sin(x)/x], and the same

null-to-null BW, 2/%, as the spectrum of the non-coherent signal.

3.3.3.2 Hardbody Doppker Return. At a range of 2,000 kilometers, the missile

hardbody can be deflned as a smooth, dense single point target. It is assumed that
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Figure 3.12 Spectra of Coherent and Non-coherent Pulsed Signals [44]

the velocity of any point of the hardbody due to the hardbody's rotational motion is

much less than the hardbody's linear velocity and is considered negligible. It is also

assumed that the target hardbody's velocity remains constant over the duration of a

transmitted pulse. With such a target, the spectrum of the return will have a

bandwidth that closely approximates (2/), and centered about the Doppler-shifted

frequency corresponding to the relative rate.
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3.3.3.3 Plume Doppler Return. The case of the exhaust plume can be

represented as the situation in which numerous point targets are imaged together.

The plume can be described as a randomly distributed array of point targets which

are dispersed in range and velocity. The plume particulates are small (submicron in

size), nonspherical and nonhomogeneous, and their size and spatial distribution vary

strongly with the radial distance from the plume axis [9,45]. Typically, larger

particles are concentratW near the plume's symmetry axis, and in contrast to the

hardbody, the numerous exhaust plume particles exhibit numerous velocity

orientations over the duration of a laser pulse.

When the laser beam illuminates such a large number of point targets, the

superposition of each particle's backscatter radiation within the la&-tA beamwidth will

form the resultant return [44,45]. Thus, the Doppler frequency spectrum will be

quite broad, due to the numerous Doppler shifts of the numerous plume particulate

velocities [1,91. This Doppler spreading of spectral lines arises from the fact that

backscatter from a particulate will be shifted in frequency in a manner depending on

the approach or recession of the particulate as seen from the tracker location. The

plume experimental programs at AEDC have observed and measured plume Doppler

reflectance frequency spectrums with null-to-null BWs of 2 - 5 GHz [28]. This

sarply contrasts the hardbody-induced return, for which the spectrum null-to-null

BW equals 2/%, with an order of magnitude in MHz. However, one other significant

difference exists between the hardbody and plume-induced Doppler returns.
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Generally, the velocity of the plume will be oriented 1800 from the hardbody's

velocity [1,9]. This is shown in Figure 3.13(a), where the respective Doppler

frequency shifts will be opposite in sign. A majority of the observed plume particles

would have a relative radial velocity towards the tracker and the resultant return

would have a negative Doppler frequency shift. Conversely, the hardbody as shown

is receding from the tracker and will thus exhibit a positive Doppler frequency shift.

Hence, by exploiting the two differences in plume and hardbody-induced Doppler

Amplitude a) Doppler Return Spectra
of Plume and Hardbody,
Showing Opposite Doppler
Shifts

Frequency
f ff
0 dlue o 0 fd w*

b) Overlap of Spectra
when Velocity Vector is
Normal to Laser LOS

Z.... Frequency

fo

Figure 3.13 Spectra ol' Plume and Hardbody-Induced Doppler Returne
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returns, namely center frequency and breadth of the two corresponding spectra,

precise tracking and definition of the plume/hardbody interface can be realized.

However, the angle y, of which the relative velocity v, is a function, has an

impact upon the discernability between the plume and the hardbody-induced Doppler

shifts. Referring to Equation (3.57), as y approaches 00, where the plume and

hardbody velocity vectors become orthogonal to the LOS vector, the radial velocity of

the target relative to the tracker approaches nil and no Doppler shift is produced.

Figure 3.13(b) shows that, under these circumstances, the return spectra of the plume

and hardbody converge towards the transmitted frequency and eventually overlap,

obscuring most of the hardbody-induced Doppler return. This imperfect ability to

detect the hardbody spectrum, as distinct from the plume spectrum, will be addressed

in the next section, which develops the Doppler measurement model.

The measurement modeling approach taken by this thesis is to consider the

usual circumstance of the Doppler return of the hardbody being significantly

distinctive from that of the plume. The Doppler detector must be designed to filter

out the broader plume return and only pass the hardbody return, a function

achievable with a Doppler matched filter design [9,38]. This vital concept signifies

that the Doppler truth measurement model can neglect the plume's Doppler return

and solely simulate the lmrdbody-induced Doppler return. Although there may be

instances of no apparent distinction between the plume and hardbody spectra, these
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occurrences will be embodied in a probability-of-miss parameter (Pm), to be discussed

later.

Since Doppler information is obtainable from backscatter radiation, which

includes the speckle return [38,39], a 3-d hardbody reflectivity model, detailed in

Section 3.3.2, is utilized in this modeling approach. However, in contrast to the laser

speckle return measurement model, the biasing effect caused by the plume's

reflectance is no longer applicable and is not incorporated into the Doppler

measurement model. As a result, the center-of-mass measurement and offset

measurement generated by the Doppler measuremont model will simulate a zero-

mean error-corrupted version of the true offset measurement, xo, for the filter.

3.3.3.4 Doppler Measurement Noiss. The Phillips Laboratory sponsored a

study in which Dr. Paul McManamon investigated feasible and implementable

wavelengths to illuminate the plume and hardbody, while meeting the space tracking

scenario requirements (9]. His choice of wavelengths, based upon ranges, power

requirements, hardbody temperatum, and tracking accuracies, range from 0.53 to

15 gtm. Foi- this study, the ahotest wavelength 0.53 pm (which provided the greatest

precision in the measured value) was selected for use in a sensitivity analysis. The

tracking inaccuracies associated with this wavelength are adopted in the Doppler

measurement model to corrupt the offset measurement realistically.
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The tracking accuracy for a laser beam is a function of the amount of power,

or amplitude, of the return signal. The return signal, in turn, is dependent upon

-everal variables, among which are the target's radar cross section (RCS) and the

location of the target in the laser beam [9,33,39]. A target ideally located in the

center of the laser beam reflects the maximum return signal (i.e., optimum signal-to-

noise ratio, SNR). If the target falls off to the side of the beam's center, then less

energy hits the target. The degree of tracking accuracy then becomes a question of,

how far off to the side can a target be to reflect the signal at an acceptable level?

Dr. MoManamon addressed this issue [91 by first defining the acceptable beam

diffraction limit as the angle within the 3 db power points of the laser beam. He

defines the diffraction limit as:

0 .8A~ (3.59)

where:

O - Half angle defined from beam center to half-power points, in

radians

X = Wavelezth, in meters

d = Radar aperture, in meters

One then determines the awcep'able level of signal loss within the Oa limits. In Dr.

McManamons s e t, a 10% loss can be tolerated, and he determined that this
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loss is reflected by decreasing the diffraction limit by a factor of 2.667 [9]. Equation

(3.59) yields:

63 (3.60)
2.667

where:

OR = Allowed diffraction limit for 10% signal loes

The measurement noise for the Doppler measurement model thus consists of

the tracking angle errors, in pixels, as a function of the diffraction limited beam and

acceptable signal-to-noise ratio (SNR). Herrera's study [91 included the following

values of SNR for the sensitivity analysis: 10, 8, 6, and 4. The relationship is given

as[9]:

r= (3.61)

where.

Ornns tracking angle era' in pixels

0,O"- Beam dc tion limit

SNR Siggal-to-noise ratio

ixel proportionality co nt, 16 pradpixel

In addition to ptovid&-g the oiiet measurement, the Doppler measurement

model also simulates a return signal probability-of-mis. P.. The probability-of-mis
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encompasses two cases. First, the probability-of-miss takes into account the situation

in which the hardbody is illuminated by the low-energy laser, but the return is not

detected due to attenuation of the returning signal as it propagates the 2,000

kilometer range, beam-bending as a result of atmospheric distortions (the intended

location of the laser scan should have illuminated the target, but bending of the beam

resulted in no intersection with the target); or due to signal losses (i.e., high sensor

sensitivity threshold; refer to Section 3.3.2.1) within the receiving equipment. In this

case, a loss of speckle information would also result. Secondly, in Equation (3.51), it

was shown that the relative velocity is a function of y, such that no Doppler shift

occurs if the target's velocity is normal to the transmitter's LOS. Hence, as shown

in Figure 3.13, as y approaches 01, both the broadened plume-induced Doppler

spectrum and hardbody-induced spectrum wiil converge and overlap. The two spectra

will become more indistnguiseble, perhaps rendering detection of the hardbody's

Doppler return imposible. In th,,s second case, there would not be a simultaneous

loas of speckle information.

The simulation of the probability-of-miss is similar to the technique employed

by the plume reflectance =cdel, A random nuwbcr generator, with a uniformly

distributed output, also providw the loic to turn the l ambody laser backscatter "on

and off." Figure 3.14 shows the detection characteritic for a known ignal. The

graph p-ents a set of parmmetric curves that give the probability-of-detection, Pj,

values as a fumcion of peak signl-to-noise raio (NU) for various value& of



44

Peak signal-to-noise ratiodtin db

Figure 3.14 Detectioii Characteristics [43]
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probability-of-false alarm, Pfa. Pf. is defined as falsely indicating the presence of a

return signal when none exists [38]. Both Pd and Pf. are specified by the system

requirements; the radar designer computes the probability-of-false alarm and, from

Figure 3.14, determines the minimum detectable signal. A range of 70 - 99 percent

probability-of-detection is representative of current Doppler detection equipment

capabilities with the tracking scenario [9].

3.4 Truth Model Parameters

The discussions in the previous sections introduced some of the truth model

paranr 'ers used in the simulation. The purpose of this section is to proviae a

consolidated listing of the parameters and initial conditions of the tuth model.

3.4.1 Torget Trojectory In'tial Conditions. The initial conditions of the target

inertial position, velocity, and velocity vector orientation angle, 0, are as follows:

e, = 27,000 meters

e, = 100,000 meters

e, = 2,000,000 meters

v, = -2,500 meters/secoid
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v = 4,330 meters/second

v = 0 meters/second

0 =600

These initial conditions represent Oeta from the Atlas ICBM; the physical meaning

is tied to the reference frame description of Section 2.4.1.1 where e, is along the LOS

vector (thus the 2,000 kilometer distance). The angle, 0, is the true angle that is

programmed as a constant in the software.

3.4.2 Target Model, Dimensions, and Orientation. The target plume consists

of a crescent-shaped intensity function formed from the difference of two bivariate

Gaussian intensvity functions. Each Gaussian function is modeled with elliptical

constant-intensty loci with an aspect ratio of 1.5, and a semi-minor axis of one. For

this thesis, Evans' 3-dimensional reflectivity model is used to model the hardbody.

The hardbody length is 40 meters (1.33 pixels) and 3 meters (0.1 pixels) wide. The

offiset distance of the hardbody centex-of-mass from the intensity centroid (actually

measured to the pogo equilibrium zero value) is 87.5 meters (2.92 pixels), a carryover

from the previous thesis, Fo the simulation, the intensity centroid and the hardbody

longitudinal axis are aligned with velocity vector, and the hardbody has zero sideslip

and zero angle-of-attck
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3.4.3 Intensity Functions. The two Gaussian bivariate intensity functions,

shown in Figure 3.3, are centered at 65 and 110 meters behind the missile. Each

intensity function has a maximum intensity value of 20 intensity units.

3.4.4 Atmospheric Jitter. The variance and mean squared value for the

atmospheric jitter in both FUR directions are 0.2 pixels2.

3.4.5 Bending/Vibration. From Equation (3.29), the values for the second-

order bending/vibration model are as follows:

,b = 5 x 10 "11

b - 0.15

Jnb n radianseconds

3.4.6 Plume Pogo Characteristics. The size of the plume is on the order of 30

times the diameter of the missile at the altitudes of interest. The values below

represent values of pogo oscillation as determined in previous research [34].

pogo oscillation = 0.1 - 10 Hz (nominal is 1 Hz)

pogo rms 0.0112 - 1.12 pixels (nominal is 0.112 pixels, which

is equal to 3.36 meters at the target; one pixel at 15

pradians per side at the range of 2,000 kilometers

equals 30 meters)
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3.4.7 Spatially Correlated Background Noise The rms value of v.,, the

summed effect of the spatially correlated background noise bk and the FUR sensor

noise njk, of Equation (3.45), equals one. This produces a SNR of 20.

3.4.8 Low-Energy Laser Speckle Return Measurement Dimensions. The low-

energy scan is represented as a rectangle at the hardbody target. The scan length

is 262.5 meters (8.75 pixels), which is three times the true model center-of-mass offset

distance, and the scan width is 0.1 meters. The measurement noise associated with

the speckle return is obtained by taking 1% of the hardbody's length, and converting

to pixels, giving a variance of 0.000178 pixels 2 [4].

3.4.9 Plume Reflectance Model. The bias utilized by the plume reflectance

model is approximately 25 - 30 meters and appears 90 - 95% of the time while the

plume is illuminated during the boost phase [I]. For the simulation, nominal values

for the bias and rate of appearance are set at 25 meters and 90%, respectively.

3.4.10 Low-Energy Doppler Return Measurement Dimensions. The Doppler

measurement noise rms tracking errors are functions of wavelength, radar aperture,

and SNR. The previous theais studied filter performance dependent upon the

wavelength values of 0.53 pn, 1.06 gn, 2.01 pn, 4.00 un, 6.00 pn, 8.00 pm, and

10.50 gr, with SNR values of 10, 8, 6, and 4, and probability-of-miss P. values of

0.00, 0.01, 0.02, 0.03,0.04,0.05,0.10, 0.20, and 0.30. Since the purpose of this thesis
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was to incorporate pogo into the filter, the filter was given the benefit of the best

possible Doppler measurements throughout the simulation. Therefore the conditions

were set for a wavelength of 0.53 pm, a SNR of 10 and aP. value of 0.01. The radar

aperture d of Equation (.59) of 0.5 meters was carried over from the previous thesis.

3.4.11 Hardbody Reflectivity Measurement Model. The function g(.), in

Equation (3.50), represents the sensitivity threshold of the low-energy laser return

sensor. The magnitude of reflection must be greater than the threshold, m, in order

to detect the return from the hardbody. In the simulation, the value of the threshold

is set to 0.00. This was to allow reception of measurements if any backscatter was

received at all (perfect LEL receiving equipment).
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3.5 Summary

This chapter presented the mathematical description of the truth model. The

truth model consists of 14 states: 2 deterministic target trajectory states, 6 stochastic

atmospheric jitter states, 4 stochastic bending/vibration states, and 2 stochastic

plume pogo states. The infrared target plume model is formed from the difference

of 2 bivariate Gaussian functions. The FUR measurements are corrupted by

spatially and temporally uncorrelated FUR sensor noise, and spatially correlated and

temporally uncorrelated background noise. The low-energy laser measurement

models, which provide an offset measurement from the intensity centroid to the

bardbody center-of-mass, consist of the plume reflectance model, the 3-dimensional

hardbody reflectivity model, and the Doppler measurement model. The plume

reflectance model simulates the elongation of the apparent hardbody in the speckle

measurement data due to the simultaneous hardbody and plume speckle return. The

3-dimensional hardbody reflectivity model provides realistic backscatter that is a

function of the hardbody's curvature and aspect angle. The Doppler measurement

model also utilizes the backswatter information from the 3-dimensional reflectivity

model and corrupts that information with noise having rms angle tracking errors

associated with a particular wavelength, radar aperture, and SNI.
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IV. Filter Models

4.1 Introduction

This chapter describes the linear Kalman filter (HP) dynamics and

measurement models that make up the basic structure for one of the elemental filters

of the Multiple Model Adaptive Estimator shown in Figure 1.3. This elemental KF

model has changed many times over the course of this research strain to be finally

consolidated in Ching's [1] thesis. These KF structures are reduced-order, simplified

versions of the truth model. Section 4.2 will describe the defining equations of the

elemental filter dynamics model. Section 4.3 details the filter measurement model

structure.

4.2 Dynamics Modds

The elemental AFIT filter used in this work is a single nine-state filter

combining models that have been developed by past AFIT students f&oa this research

line [1,3,8,9,26,28,34,35]. The filter consists of two hardbody center-of-mass position

states (note that these two states are different from the first two states of the truth

model, which are position of plume intensity centroid), two hardbody center-of-mass
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velocity states, two atmospheric jitter position states (affecting the plume centroid in

the FUR plane), two pogo oscillation states (affecting centroid location relative to

hardbody center-of-mass), and a plume intensity centroid/hardbody center-of-mass

offset state. The state vector for this elemental filter is:

SX(t) =Xy, v vY X ya XP VPX 0 ]T (4.1)

where:

Xt = x component of target (center-of-mass of hardbody) position

(azimuth) relative to center of the FOV

Yt = y component of target (center-of-mass of hardbody) position

(elevation) relative to center of FOV

V = x component of target (center-of-mass of hardbody) velocity

v, = y component of target (center-of-mass of hardbody) velocity

o = x component of atmospheric jitter

y = y component of atmospheric jitter

X = plume pogo offset distance (along velocity vector) of plume

centroid from the equilibrium point

vp %velocity of the pogo oscillation (along velocity vector)

X'o = offset distance between the plume centroid equilibrium point and

the hardbody center-of-mass

Each state in Equation (4.1) is coordinatized in the a-3 (FLIR) plane. A

comparison between the filter model and truth model show that some state reduction
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has occurred. Only two atmospheric states are represented in the filter, compared

with six in the truth model. The high frequency poles have been eliminated (four

states, two for each double pole in each coordinate direction) due to their negligible

impact [321. The bending/vibration states have also been eliminated for this reason

[121. The pogo states in the fiter are identical to the pogo states in the truth model.

The total offset distance from the filter-predicted plume centroid to the filter

predicted hardbody center-of-mass is composed of a linear combination of filter states,

including x,, y., xP, and X.

The fiter model is described by the following time-invariant, linear stochastic

differential equation [21]:

At) =Fx + Gw) (4.2)

where:

F Time-invariant system (plant) matrix

x(t) = 9-dimensional filter state vector

G 9 x 6 time-invariant noise distribution matrix

w(t) = 6-dimensional, white Gausaian noise process with independent

components, and mean and covariance kernel statistic&
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E w(t)} = 0

E {w(t)w(t + C)T } = Q 8(t)

The filter state estimate and error covariance matrix are propagated forward

to the next measurement update using the following discrete-time filter propagation

equations [161:

0(oux= ( tit) (4.4)

P(s 1) -- O(A:)P(4') J(At) + Qd (4.5)

where:

1(t). = Filter estimate of the 9-dimensional state vector

ID(At) = 9 x 9 time-invariant state transition matrix for propagation over

the sample period: At = ti., - t-

P(t = 9 x 9 filter covariance matrix

() Time instant before FUR measurement is incorporated into the

estimate at time t4

(4) Time instant after FIR measurement is incorprated into the

estimate at time tj
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Qd = 9 x 9 filter dynamics discree noise covarianue given by:

f 0i(t,., - r)G Q GT OT(t, - T)d 44

The block diagonal components of Equations (4.2), (4.4), and (4.5) associated with

each state are described in the next four sectior.

4.2.1 Target Dynamics Model. The elemental filter uses four states to describe

the target dynamics. The velocity states are represented as random constants plus

noise with the time-invariant continuous-time dynamics system (plant) matrix, F,,

given by:

~0010

0001 (47)
~0000

*0 0 00.

The noise distribution matrix, G,, is:

G , 0 0 o(4.8)1 0

The strength of the white Gaussian noise w,,is given by Q, is:
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(4.9)

where Q. and Q, are the noise strength values in the x and y directions. The time-

invariant target dynamics state transition nmatrix, 00(At), is given by:

1 0 At 0

*(At) 0 1 0 At (4.10)
0 0 1 0

.0 0 0 1

The solution to Equation (4.6) using Equations (4.8), (4.9), and (4.10) yields the filter

dynamics discrete noise covariance, Qd given by:

A 3  0 IQt 0

2 "

0 2 Q,,t3 Q,13, 0 3 (4.11)

4QA: 0 Q0t 0

0 !QAt 0 QAt

4.2.2, 4tmp1&eric Disturbwwe ModeL The atouaphdericjitter model describes

the motion oi the plum image iu the. F1H pwe due to atnospheric distubances

(raction variatin from m euo thermal v-rtion, etc.). Tht saix-stae filter har
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been reduced to two states, one in each the x and y direction. The time-invariant

system matrix, F., of the continuous-time dynamics model of Equation (4.2) is:

a 0a ] (4.12)

where:

0) = Atmospheric jitter break frequency, 14.14 rad/sec

The noise distribution taatrix, G, is:

Go = [101 (4.13)

The strength of the white Gaussian noise, Q., is:

-(4 0
To 22 (4.14)

T a

where:

Od Variane and mean-squared value for the atmaophemic jittex

procew

Correhatien time constant for atmoaphericjitter proess ( 1lo)
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The time-invariant target dynamics state transition matrix, 4,(At), is given by:

04(At) -xP(OCAt) 0 (4.15)¢,,(0 = expC-(OAt)

The part of the solution to Equation (4.6) due to atmospheric jitter, using Equations

(4.13), (4.14), and (4.15) yield the fiter dynamics noise covariance, Q&, is:

qda 0
d= [ 0 q] (4.16)

where:

= = o2 1 - (2(Aj] (4.17)

4.2.8 Pogo Dynamics Model. The implemented filter plume pogo model is

identical to the truth model described in Section 3.2.4. The time-invariant system

matrix, Fp, is given by:

p 02 1(4.18)

where:

o)pf = Undamped natural pogo frequency (0.1 - 10 Hz)

pf = Filter damping coefficient chosen to be 0.05 [34]
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The noise distribution matrix, Gp, is:

'p [KJ (4.19)

and the white Gaussian noise, wp is of unit strength:

SQ,=1 (4.20)

The time-invariant target dynamics state transition matrix, 4(1At), is given by:

0= ® 1 (Ac) 01Pi2(A9] (4.21)

with the individual elements of the 00t) given in Equation (3.43). The filter

dynamics noise covariance matrix, Qd is not included here due to ita length and

complexity. The conuplete matrix description is found in the AFIT software [25].

4.2.4 Centroid Equilibrium Point/Centerof.Mass Offset Mode. In previous

theses [8,9,14), the measurement determined from the LEL (by either speckle return

or Doppler spectra of the plume and hardbody) was processed in an independent

center-of-mass offset filter. The estimate from that filter was then added to a FLIR

filter estimate of the position of the centroid in order to obtain center-of.mass

position. Since pogo was not included in the filter models, the offset between the

center-of-mass and the intensity centraid was modeled as a constant. For this thesis,

the same dynamics model is used, but the offset state is augmented to the previous
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models to form a single nine-state elemental filter. The centroid offset state, modeled

as a constant bias, describes the distance between the center-of-mass of the missile

hardbody and the equilibrium point about which the plume pogos. Equations (4.2),

(4.4), and (4.5) are still applicable but are expressed in scalar form since there is only

a single state. The bias is modeled as the output of a simple integrator, with driving

pseudo-noise for filter tuning purposes.

The elements of the linear, time-invariant stochastic differential equation are:

F. 0

Go = Time-invariant noise distribution matrix, equal to unity

wo(t) = White Gaussian noise process, independent of the noises driving

the target dynamics and atmospheric jitter models, with mean

and covariance kernel statistics:

E (w0(o) 0 (4.22)

E W.0%(t + C) Q0 8(t)

and Q=1.

The elements ofthe equivalent discrete-time filter propagation Equations (4.4)

and (4.6) are given by:

4,(At) Time-invariant state transition matrix, equal to unity

Q Filter dynamics noise variance equal to QoAt
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4.3 Measurement Models

This section discusses the two different measurement models t re used in

this simulation. The thesis students in this research strain only had one

measurement souce, the FLIR, until Eden [8], who added the second source, a low-

energy laser. The FUR measurement model is detailed in the first cubsection, where

it is explained how the raw data is processed through the enhanced correlation

algorithm. This raw data, compared with data templates, form the "pseudo-

measurements" for the linear Kalman filter. The linear and non-linear update

functions used for the Kalman filters are also presented. The last subsection

describes the measurement model used for the low-energy laser measurements.

4.3.1 FIR Measurement Mode. Measurements of the plume intensity

centroid's position are generated by an enhanced correlator algorithm, shown in

Figure 4.1, developed by Rogers [22,351. This enhanced correlator algorithm

compares the incoming FLUIR data frame to a template that represents an estimate

of the target plume's intensity function. Previous cozrelatom compared the current

data frame with the previous data frame. The "pseudo-measurement" of the

centroid's position offsets produced by the enhanced correlator are a nonharsh

nonlinear function of the states being estimated, and thus a nearly linear Kalman

filter is used (9].
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As will be seen later in the section, the nonlinearity is a sinusoidal function caused
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by the introduction of the plume pogo effect into the model. The sinusoidal function

is a mild nonlinearity in comparison to the extended Kalman filter measurement

model required to process raw FUR data. This enhanced correlatorflinear Kalman

filter configuration performs as well as the extended Kalman filter with respect to

rms tracking errors and further provided a reduction in computational loading [1].

The "enhancement" occurs in the following manner [35]:

1. The most current FUR data is correlated with a template (which is an

estimate of the target's intensity function), instead of with the previous FUR data

frame.

2. Instead of outputting the location of the peak of the correlation function, a

technique known as "thresholding" is used along with a simple center-of-mass

computation. The enhanced correlator outputs the center-of-mass of the portion of

the correlation function that is greater than some predetermined lower bound.

Consequently, the enhanced correlator has no difficulty distinguishing global peaks

from local peaks, as do many conventional "peak-finding" correlation algorithm&

3. The FLIR/laser pointing commands are generated via the one-sample-

period-ahead predictions from the Kalman filter propagation cycle instead of by the

"raw measurement" output of a staudard conreJation algorithm.
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4. The Kalman filter estimate, &(t, is used to center the template, so that the

offsets seen in the enhanced correlator algorithm should be smaller than those visible

in the conventional correlator. This increases the amount of "overlap" between the

actual FLIR data and the stored template, and thus improves performance.

Referring back to Figure 4.1, the enhanced correlation algorithm uses the 8x8

array of target intensities obtained by the FUR measurement, to establish a 64-

element shape function from the target plume intensity proffle. The current FUR

data is correlated against the template of the previously stored shape function that

has been centered on the FUR image plane. The outputs of the algorithm are two

linear offsets, x, andyc in Equations (3.1) and (3.2), that yield the highest correlation

of the current data with the template. These "pseudo-measurements" are then fed

to the linear Kalman filter for its update cycle. The filter provides the updated

estimate, 10tj9, used to center the F UR intensity profide to be included in the

template generation for the next measurement.

For forming the next template, the current intensity function image is centered

on the FUR plane by traslational shifts using centroid offset estimates from !Y %

using the "shifting property" of the Fourier Tansform, where negating phase shifts

are applied in the spatial frequency domain to accomplish a translational shift in the

original domain. Rather than perform the difficult correlation in the time domain,

the Fourier domain allows one to apply multiplication to implement the "translational
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shift" of the intensity functions and eventual correlation with +he template.

Exponential smoothing is then used to average the result with previously centered

images to yield an updated template.

4.3.1.2 Template Generation. The template reconstructs the shape, size, and

location of the intensity centroid using the raw noise-corrupted FLIR measurements.

The template generation begins with an input of a FUR frame of data to the

enhanced correlator algorithm of Figure 4.1. Using the "shifting" property of the fast

Fourier transform (FFT), which states that a translational shift in the spatial domain

is equivalent to a linear phase shift in the frequency domain, the required phase shift

is computed by:

Ax-x1 -& ~ (4.23)

where:

FO.1 Fourier transforn operator

gXY) 2-dimensional spatial data array

t Spatiales

The Fourier tnsform is implemented in the simulation software using the

Cooley-Tukey algorithm [351. The target piume intensity shape function is 'centewei

on the FLIR plane" by phase shifting the transformed function an amount equal to:
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XA(t-) = ,) + 4(h) + ((4t)- o(t4 ) CS (4.24)

YA(t) = th + Sa(4') '- t 1') --fo(h) ) Sfl

where Of is the filter's estimate of the velocity vector angle in the FUR plane (recall

Figure 3.7), such that:

x + pY2(4.24a)

fm = -2__

x 2

Wher A , A A A, A A A

where Yt, 0I VV, Xas, y', and XP are the state estimates defined in Equation (4.1).

Once the data is centered on the FUR plane, it is incorporated into an updated

template for the next sample period, In the simulation, the Kalman filter's first

update cycle is bypassed to form the initial template.

The template is generated by averaging the N wo 4  'ecent centered intensity

functions observed by the FIlM sensor. The averaging ,,zess tends to acentuate

the target intensity function and attenuate the corrupting background mid FLl

noises. The memory size Nis chosen according to how rapidly the thape functions

change, i.e., highly dynamic intensity functons require small values of N, while

slowly varying functions use large Nvalues. Tpically, a true finite memory averager

would require a large computer memory [17). However, the enhanced canveatox,
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algorithm circumvents the memory storage issue by incorporating an "exponential

smoothing" technique to approximate the averaging. This technique has properties

similar to finite memory averaging, but with the advantage of requiring only the

storage of a single FUR frame of data. The template is maintained by the

exponential smoothing algorithm given by:

1(t,) = yI(t,) + (1 - y)Ot,_) (4.25)

where:

1(t1) = "Smoothed estimate" (template) of the target's intensity function

I(ti) = "Raw" intensity function from the current FUR data frame

y = Smoothing constant: 0 < y:9 1

The smootfing constant, y, is comparable to the value seiected for N. From Equation

(4.25), it can be seen that large values of y emphasize the current data frame and

correspond to small values of N. Bases on previous studies [14,40], a smoothing

constant of Y 0. is used for this thesis.

A reinitialization Igoithtu is used after the first tan sample periods (although

it auld be called periodically in actual implementation). Once the templete is

computed, its centrold is calculated and shifted to the center of the field-ef~view for

the temilate, thus eliminating any initial pointing base. it is this template which

4-17



is now stored and correlated with the next FUR data to produce the "pseudo-

measurements" [43].

4.3.1.3 "Pseudo-Measurements." The template serves as the best estimate of

the shape of the target plume intensity function prior to receiving a new FUR data

frame. The cross-correlation of the incoming FUR data with the template provides

the position offsets from the center of the FOV to the centroid of the target intensity

image. The cross-correlation is computed by taking the inverse fast Fourier

transform (IFFT) of the equation [35]:

F { g(y) •/(xy)} - G (j)L(°Xf) (4.26)

where:

) = Fourier transform operator

g(xoy) = Measured target intensity function of the current FUR

data frame

l(xy) Expected target plume intensity function (Lie., template)

g(x y)* lX;y) Crwa-correlation of gbv) and (xy)

G(f J) - F(g(xAy))

V (f, f) Complex conjugate of FJI(xy))

After the IFT is accomplished, the values of the correlation function, g(y) *.(y),

re. modified such that any value less than 30% of the fimction's maximum value is

set to zero 114,31]. This "threh " technique is ued to eliminate fakse peaks in
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the correlation function that occur due to noise and other effects. As shown earlier

in Figure 4.1, the output of the image correlation is the offset of the "thresholded"

FUR intensity centroid from the center of the FUR FOV. This offset is assumed to

be the result of the summed effects of target dynamics, atmospheric jitter, the pogo

effect, and measurement noise.

For the VIR measurement update, the z- and y- components of the offsets are

the pseudo-measurements provided to the Kalman filter. These offsets are expressed

as:

S (4.27)

yw = ye + yd - (xP - X 0sOf + V

where:

i(4.28)

+V

and Of is the angle between the velocity vector and the x-axis of the FUR plane

(mcall Figure 3.7). These two measurements can be represented in state space form
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z(W = hf[ x,(t W] + v1(W (4.29)

where:
z(t). = [ xof(t), YOff(t] T; 2-dimensional vector measured in pixels

ht.,t)t] = Nonlinear measurement function vector given by Equation (4.27)

x/t. = 9 x 1 state vector from Equation (4.1)

vft) = 2-dimensional, discrete-time, white Gaussian measurement noise

(in pixels) with statistics:

E f iV(tJ)) = 0

I R t, t= 
(4.30)

0[ o t

Note that because of the pogo states and offiset state, x, being defined along the

velocity vector and being included in the output equations, this measurement model

is nonlinear in the filtor states, and the extended Kalman filter update cycle

described in Chapter H (Equations (2.26) and (2.27) ) must be applied. These update

equatioiw are

A'(4') = IWO, + At,)t zt,) - k.6[14(tiv,] 1 (4.31)

i)= 4) - 2

;a-ere:
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K(t) 9 x 2 filter gain matrix

P/t) = 9 x 9 filter covariance matrix

hAx(t),ti = 2-dimensional nonlinear measurement function; Equation (4.29)

Hf = Linearized measurement matrix; Equatioal (2.26)

R = 2 x 2 measurement noise covariance matrix; Equation (4.34)

&/t) = 9-dimensional estimated state vector; Equation (4.1)

z(t). = 2-dimensional measurement vector; Equation (4.29)

(t1') = Time instant just prior to measurements being incorporated at

time t

(4') Time instant just after measurements are incorporated at time t,

The linearized FUR measurement matrix H is given by:

11 H13 1 1 ()"H' (4.32)

0 2 H4 ,0 1 HI, 019 4.2

where:

M1 .. ........ - (4.M a)

a~t1x/J-X 3 X4 (X7 '-X)
4 . 3 (4.33b)
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8h [xt1] - -"I 43d
H17 =- (4.33)

a [,, + [ 4)J[

H19  ah[x,] , [ [ (4.33d)

H akV[xti] - 13 X4 (X7 V ~
ax, 3 3 (4.33e)

[X 142 x 4p

H24___ ________2 Xt 1  4 7 - XO)

HA ~ + £ (4.33f)

[%1~t X2]

11 27 xt~ =34]L4 (4.33g)

H29  ak4f] I-X (4.33h)

The measurement noise v(t)- , represents the combined corrupting effects of the

spatially correlated background noise, the FUR sensor noise, and the errors due to

the FFT/IFFT processes. The covariance matrix, Rp associated with this error is

given by [8,28,35]:

4-22



= 0.00436 0 ]R ! = 0 0 . 0 3 P r / 2( 4 .3 4 )

4.3.2 Doppler Measurement Model. The primary purpose of this research is

the precise tracking of the missile hardbody and determination of its center-of-mass

location in the presence of plume pogo. The basic premise underlying the dynamics

modeling efforts is that the center-of-mass is located at a constant offset distance

relative to an equilibrium point about which the intensity centroid oscillates due to

the pogo effect. The offset distance is oriented angularly using the filter-estimated

velocity in the FUR image plane [3]. Figure 4.2 illustrates the geometry of

estimating the offset distance and the dependence of the scan and offset computation

upon the filter's estimates of the position and velocity of the ini -msity centroid

immediately after the FUR upda~e. Note that Figure 4.2 depicts the ideal situation;

in general, the filter estimates of the centroid position, velocity, and the orientation

angle are not equal to the truth model values. A low-energy laser is scanned along

the filters' estimate of the velocity vector, starting at the filters' centroid estimate.

The missile hardbody reflections determine the center-of-mass as the midpoint of the

line segment joining the two endpoints. The offset measurement delivered by the

scan is a function of the constant offset plus translation of the centroid from its

equilibrium point due to the pogo phenomenon.
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YFUR AL True and Filter-Estimated

Center-of-Mass

VtM Vfvt~vf
True and Flite Estimate

of Offset DItance

Pogo Offset 3-d Hardbody Rectangle

Low-Energy Laser Scan
~Pogo Equilibrium Point

ot- W f

True Location and +XFURFilter Estimate of

Intensity Centrold

Figure 4.2 Filter Estimate of Offset Distance (Ideal Conditions)

Previous theses [3,4,9] utilized a two-filter approach in which the FLIR filter

an'd center-of-mass filter functioned autonomously; the FLIR" filter had no

knowledge of the existence of the "center-of-mass" filter. Both Eden (3] and Evans

(4] utilized the low-enerry-laser speckle return of the hardbody/plume interface to

generate measurements for the "center-of-mass" filter. Herrera [9] utilized the

Doppler spectra in the laser return to derive successfully a more accurate, unbiased,

offset measurement, but still maintained the same basic independent-filter structure.

Ching [1] combined the "FUR" and "center-of-mass" filters into the current nine-state
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filter model. The Doppler measurement model used for this research was developed

in previous these [1,9], and the model description is largely taken from these research

reports.

The Doppler measurement model provides a measurement based upon the low-

energy laser Doppler return of the hardbody. The significant dissimilarities between

the plume and hardbod,--induced Doppler returns can be exploited to discern the

plume/hardbody interface (Section 3.3.3) precisely, and provide information regarding

the location of the hardbody. The low-energy laser measurement is provided to the

Kalman filter whenever the laser intercepts the hardbody, and the hardbody-induced

(and plume-"iduced) Doppler return is received by Doppler return sensor equipment.

The resulting measurement to be provided to the filter is a noise-corrupted

measurement of offset distance, which is a linear function of the filti'i offset and

pogo estimates. The measurement is given by:

X0 - X9 - X7 (4.35)

The discrete-time scalar measurement model is given by:

= HO x(,) + VA) (4.36)

where:

z(t,) = Measurement of the offset distance

Ho = 1 x 9 measurement matrix

x(t) = 9 x 1 state vector e' the filter
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v/t) = Discrete-time, white Gaussian measurement noise with statistics:

E {v(t) } = 0

E °jV~) l t, tj (4.37)

where Rf = R, (true Doppler measurement variance), a function of low-energy laser

wavelength, radar aperture, and signal-to-noise ratio (Section 3.3.3). The

measurement matrix, H,, is defined in accordance with Equation (4.35) as:

He =[000000 -1011 (4.33)

Since the measurement is linear, the linear Kalman filter update cycle described in

Section 2.2.2 (Equations (2.22) - (2.24)) is used.

In some instances, the low-energy laser sweep may be unsuccessful in

generating a measurement, due to missing the hardbody because of poor estimation

of the centroid location and velocity vector orientation, or due to poor conditions for

discerning the differences in Doppler frequency spectra between the hardbody and

plume. If a measurement is not generated by the LEL sweep, the LEL update is

bypassed.

4.3.3 Filter Parameters. This section provides a consolidated reference of the

parameters used for this simulation. Presented below are definitions of the modeling

parameters, initial conditions, and tuning parameters for the nine-state filter used

in this research.
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4.3.3.1 Initial Conditions. The filtzr initial state estimate, x, is artificially

initialized to zero error for the position, velocity, and pogo states of Equation (4.1).

The position states, x, and x2, are initialized to the true center-of-mass with the

target intensity centroid centered in the FUR FOV. The velocity states, x3 and x4,

are initialized in accordance with the target's initial trajectory conditions as defined

in Section 3.4.1. Both atmospheric states, x. and x6, are initialized to zero. The offset

of the plume from its equilibrium point (pogo position) and the velocity of this

oscillation (plume pogo velocity) are initialized to zero since both are naturally zero-

mean processes. The constant distance between the equilibrium point and the center-

of-mass are also initialized to true conditions (87.5 meters, or 2.92 pixels).

The initial state covariance matrix, P(td), is:

100 0 0 0 0 0 0 0

010 0 0 0 0 0 0 0
0 0 2000 0 0 0 0 0 0
0 0 0 2000 0 0 0 0 0

P(t) 0 0 0 0 .2 0 0 0 0 (4.39)

0 0 0 0 0.2 0 0 0

0 0 0 0 0 0 500 00

0 0 0 0 0 0 0 250 0

0 0 0 0 000 0 .2

where the units of the covariance associated with the hardbody center-of-mass

position states, x, and x2, the atmospheric states, x5 and x6, the pogo position statex,

and the offset state, xg, are pixels', and those of the center-of-mass velocity states, x3
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and x4,and the pogo velocity state, x8 , are expressed in pixels2/secund2 [4]. The new

values in equation (4.39), 500 and 250, gave th best results during the simulation

data runs.

4.3.3.2 Tuning Values. The measurement covariance matrix for the I LIR,

RmR was established empirically in past research [22,35]. RFmR (with units of pixels)

is given by:

= [0.00363 0598 (4.40)

The measurement variance for the Doppler measurement, R&, is equal to the true

measurement variance and is a function of the low-energy laser wavelength, SNR,

and aperture diameter of the transmitter. The filter measurement variance is carried

over from Herrera's research and is given by [9]:

RD,,. (4.41)
Fwr3k~ j

where:

R~vp = Filter measurement noise variance

R = True measurement noise variance

OB = Beam diffraction limit

kp = Pixel proportionality constant; 15 lirads/pixel

SNR f Signal-to-noise ratio; 10
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Both atmospheric variances, oy2 and Gay2, are equal to 0.2 pixels 2, in accordance

with the truth model (Section 3.2.2) [4]. The process noise strength for the pogo state

is dependent upon the desired rms amplitude of the pogo oscillation, up 2, [34]. The

filter pogo gain constant, Kp is initially set equal to the truth pogo gain constant, K

( Section 3.2.4, Equation (3.38)) and then adjusted if necessary while leaving the

truth noise strength constant. Nominal rms pogo amplitude for this research was

carried over from Rizzo's research and set to G 2 = 0.112 pixels 2 at a frequency of w%

= 1 Hz. The offset state dynamics noise variance, Qd. from Section 4.2.4, is equal to

0.9 pixels 2, based upon Evans' research (4]. The probability of miss for the Doppler

measurement model was set at 0.01 (Section 3.3.3.4)
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4.4 Summary

A nine-state extended KaIman filter is used in this research to investigate its

performance in tracking the hardbody cen'er-of-mass from a large distance, in the

presence of vehicle dynamics, atmospheric jitter, and plume pogoing effects. This

chapter has described this extended Kalman filter's linear internal dynamics model

dealing with the propagation of the state estimate, '. The two different measurement

models, FUR and low-energy laser Doppler model, were discussed in the context of

their role in the update process. These two distinct updates are accomplished in a

method in which the FLR 2 x 1 update is processed and then the scalar laser update

is performed if there is a laser "hit" on the hardbody center-of-maas. The last section

provided a summary of the initial conditions used for this extended Kalman filter

algorithm.
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V Elemental Filter and MMAE Results/Analysis

5.1 Introduction.

The software simulation of the real world, measurement generation, enhanced

correlavor algorithm and various Kalman filters have been developed at AFIT over

the last 15 years [211. This thesis is the continuation of the overall research effort

into this missile tracking pioblem. Ihe linear Kalman filter used in conjunction with

an enharmoed con'elator algorithm provides a viable tracking algorithm that is used

in different configurations that further ow' knowledge ih this MMAE tracking area.

Figure 5.1 shows the block diagram used to explore the purameter space of

amplitude and frequency cf oscillation of the plume pogo phenomenon. Section 5.2

details the shigle-filter implementation and performance analysis of this block

diagram, with the follow-on thought processes used for MMAE configuration choices.

The insight gained from the analysis of Section 5.2 is usAd to form several MMAE

contfguratione. Results and performance analysis of the computer run from these

various configurations is accomplished in Section 6.3.
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Figure 5.1 Single Kalman Filter Block Diagram Implementat-i n

5.2 Elemental Kalman Filter Simulation Results ,Analysis

6.2.1 h froduction. The ptupose in accomplishing the single-filter data runs

is to ensure that s working Kalman filter (KE) model is being used for the foundation

of the elemental filters that make up the MMAE structure, Tlis working model

shoule, be tested at all of the pmrameter conditions to ensue that divergence of the

flter is not seen. Analysis of these computer runs will help in evaluating data

performance and will give insight into the choice of the various MMAE
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configurations. Comparison of the single filter residuals will also help in the

prediction of success or failure of the different MMAE configurations.

Table 5.1 introduces the parameter values for the different elemental filter

data simulations and the Appendix locations for the output plots. All of these data

runs are made up of 5 Monte Carlo (MC) simulations. These plots show the

Truth Condition Filter Condition Appendix Location

(Amplitude/Frequency) (Amplitude/Frequency) for Output Plots

0.112/2n 0.11212n C,1 - C.9

0.112/20M C.10 - C.12

1.12/2n C.13 - C.15

1.12/20n C,16 -C.18

0.112/20n 0.112/20n D.1 -0,9

0.12/2a 1 -D.12

l_.2,20n D13 -D1

1,12/2n R16 - ,18

1_,_2_ n_1,12t2t HU - E.9

1,1210n ERIO - K12

0 11.124 n E.i3 -E1

0,,112/20rt B.16 - E.18

I.I 2 F.10 - F,12

0.1121220t F.13 - F.15

0 _11 W_ F.16 -F.18

Table 5.1 Single Ka Ma Nild 11ruth azid Filter Paraueter Vahl"s
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error in each filter state plotted in pixels versus time (60 samples per second).

Statistics from the MC runs, mean error and standard deviation of the mean error,

are compiled at times t- and t*, just prior to and just after the update measurement

at each sample period. The chosen pogo amplitude values of 0.112 and 1.12 pixels

in Table 5.1 (approximately 3 and 30 meters at the range of 2,000 kilometers) make

physical sense, as do the pogo frequencies of 2n and 20n (1 and 10 Hertz). These

tabular results are contained throughout this chapter.

5.2.2 Single-FilterData Runs. The single-KF data simulations were performed

with the fact that a KF that is artificially informed of the correct truth condition will

provide the best results of any possible scenario. The parameter space defined in

Figure 6.2 is used to describe the combinations of data runs. The point in Figure 6.2

that is not shown in Table 6.1, 0.112/11j, was added after insight was gained firom

performance of the single-filter data runs. Several 6-run Motae Carlo (MC)

simulations are made for the 5 single-filter coxifigrations defined in Table 6.1. On

the fust set of MC runs, the KF is artificialy informed of the cortrec truth condition

for the purow of developing a "best wenariao baseline set of data. The MC

simulations in which the filter has the "incorrect! parameter values are performed

for three reasons. First, it is necessary to have non-divergent elemental filters

running in this MhMAE scheme. There is no built-in adaptation process for a

divergent filter. The second reason ;a for parameter identification purposes. The

filters that show the best residuals should be those that are progVummed with the
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Figure 6.2 Graphical View of Parameter Space

parmueter values that best =at" the real world conditions that the filter is tracking.

Comparison of the output residuals from these single i ne will be used to choose the

MMAE configuration with the best chance of parameter identification success. The

third reason is to have a "best case" set of filter pertbrmance data which can be

coupared later to the different MMAE Agurations.

The t iing of these Kaima filters is a critical issue, as there is a balace that

must be met over the range of these potential elemental filters. On the one hand, the

5-6



low dynamic filters (low amplitude and low frequency pogo parameter values) cannot

be tuned so tightly as to cause divergence when used against a higher dynamic truth

model. Also, the high dynamic filters cannot be so conservatively tuned as to cause

the low-pogo-dynamics filters to attribute errors wrongly from one state to another,

thus giving false outputs. To be as effective as possible, tight tuning should be used

on all of the states for all of the filters.

The next five sections, which provide an indepth analysis of the plots of

Appendices C through F, show that the five chosen elemental filters work well. They

behave as they should, given the input filter parameter values, and indeed provide

a working elemental filter model for use in a Multiple Model Adaptive Estimator.

5.2.2.1 Truth Parameter Values: Low Ampl tade, Low Frequency. This section

describes the cases in which the truth parameter values are set to an amplitude of

0.112 pixels and a frequency of 2n radians per second, with various filter parameter

settings. The filter parameter values are 0.112/2g (filter is "artificially" informed of

the correct t.Lth coadition), 0.112/20n, 1.12/2n, 1.12/20n. and 0.112/11u.

The first set of Monte Carlo (MC) data runs has the truth parameter values

equaling the filter parameter values, set to 0.112/2n, corresponding to the lower left

point of Figure 6.2. The output error statistics are detailed in Table 6.2. These error

6-6



State Mean Error (t) Mean Error (t ) STD. DEV. STD. DEV.
_(ti) a(tj*)

X Position* 0.060 0.061 0.427 0.401

Y Position* 0.072 0.074 0.341 0.313

X Velocity 0.010 0.006 2.791 2.789

Y Velocity 0.058 0.048 2.593 2.586

X Jitter 0.024 0.026 0.428 0.399

Y Jitter 0.023 0.020 0.473 0.458

Pogo Position# 0.004 0.004 1.756 0.176

Pogo Velocity# 0.032 0.031 1.100 1.100

Offset Distance# 0.119 0.120 0.514 0.515

X Centroid 0.004 0.003 0.458 0.444

Y Centroid 0.173 0,176 0.576 0.565

Table 5.2 Time-Averaged Error Statistics for Elemental Filter
(Truth = 0.112/2n, Filter = 0,112/2n)

*X and Y Hardbody Center-of-Mass Position
#Measured in the Direction of the Velocity Vector

statistics are compiled as steady-state statistics from t = 2 to 6.5 seconds (60 samples

per second). The residuals from this data run are plotted as three separate

measurements (2 FLIR measturements, one each in the x- and y- directions, and one

low-energy laser measurement).

The filter error plots of Appendix C, Plots C.1 through C.8, show that there is

no divergence in any of the states. Plot C.1a (Hardbody center-of-mass position state)

shows that the filter- predicted pluw/mius one standard deviation is very close to the

actual plus/ainus one standard deviation. The filter.versus-actual error plot is close
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to being zero-mean. The more Monte Carlo (MO) runs that are made the "flatter" this

plot would be. The error in filter state 2 (y- position of the hardbody center-of-mass),

plot C.lb, is similar to C.1a in that the filter-versus-actual error is zero-mean and the

filter-predicted plus/minus one sigma is close to the filter-versus-actual plus/minus

one sigma. Plots C.2a and C.2b show the error in filter states 3 and 4 (velocity in x-

and y- direction of hardbody center-of-mass). This error again is zero-mean, but the

plus/minus one sigma of the filter-versus-actual error is well within the filter-

predicted plus/minus one sigma; peculiar to these two filter states. When the tuning

of the filter was so tight as to drive the filter-predicted plus/minus one sigma to meet

the filter-versus-actual error plus/minus one sigma, divergence was seen on the

position states.

Filter states 5 and 6 (x- andy- atmospheric states) of plots C.3a and C.4a show

the mean values of the actual filter and truth data plotted. The filter does a good job

in following the actual atmospherics, as is seen by the close proximity of the filter and

truth plots. The filter-versus-actual error for this data, plotted in C.3b and CAb,

show that the error is very close to being zero-mea w, considering the relatively small

number of MC runs. Also, the filter-predicted plus/minus one sigma is close to the

filter versus-aciual-error plu6/minus one sigma. The tuning is tight for thee states,

as is seen in the plus one sigma of the filter is actually inside the plus one sigma for

the filter versuG actual error. The actual rm jitter error is 0.2 pixels, so these errors

are subatantial compared to the size of the jitter. Note, the filter-predicted one sigm
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seen in all of the plots that show the filter-versus-actual error is a standard saw-

toothed pattern as anticipated for a propagate/update cycling of a filter, but it is

sampled (plotted) less frequently than the 60 Hertz sample rate and so has a strange

appearance in the plots.

The filter states 7 and 8 (Pogo position and velocity in the direction of the

velocity vector) are shown with the filter state data plotted against the truth model

in C.5a and C.6a. Since the pogo amplitude is small the filter has a hard time of

precise tracking for this phenomenon. In plots C.5b and C.6b, the filter-versus-actual

error is plotted against the filter-predicted plus/minus one sigma. For both -f these

cases, the filter-predicted plus/minus one signm is outside of the filter-versus-actual

error plus/minus one sigma.

Filter state 9 (Offset distance between the plume centroid equilibrium poait

and the hardbody center-of-mass) is plotted versus the truth data in I.Ta and the

filter-versus-actual error plotted in C.7b. These plots shoil that the filter does a

pretty good job of estimating this state (error plot is approximately zero-mean), The

filter-predicted plus/minus one sigma is close to the filter-vexsua-actual err

plus/minus one sigua

Plots C.8a and C.8b are the filter versus actual error of the x- and y- centroid

position (not an actual filter state but a linear coibhiation of filter states). Plot C.Sa
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shows zero-mean but the plot of C.8b shows a slight ias for the y- centroid position.

This is not really an important error, as the fillers' main purpose is to track the

hardbody center-of-mass, not just the plume intensity centroid.

The plots labeled C.9 in Appendix C show the three different residuals with

their plus/minus one standard deviation. These plots show the residuals to be zero-

mean, given the 5-MC run simulation. The scaling of these residual plots is large so

as to allow easy comparison with later plots.

For the sake of brevity, only the plots from the different 5-run MC simulations

that have a direct bearing on this analysis will be shown from this point on. Also the

error statistics of Tables 5.2 and 5.3 that are compiled for each of the simulations

would undaly expand this document; thus, only the error statistics that show trends

will be shown. Tables 5.3, 5.5, 5.7, and 5.9 show a comparison of the Pogo Position

and Pogo Velocity errors for all the simulations of each of the Sections 6.2.2.1-4.

The filter parmeter values are changed to 0.11 2/203 (Far right point along the

constant 0.112 line iii Figure 5.2) to produce plots C.10 - 0.12. The pogo position

state 7 plots (CAG for filter 0.112/20n; C.5 for filter 0.1122n) reveal the differences

between the two different data runs. The filter bounces ba~k and forth over the low

amplitude, but really doesn't track the "real world" low frequency pogo at all. The

scaling oftplot C.AOb is such that the filter is looking for a high frequency signal and
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the transients have not completely dissipated before the plotting routine starts (this

plotting routine starts at the fifth sample point). The plot of filter state 8 (pogo

velocity), C.11a and C.11b (note the y-axis scales), shows a large difference in the

pogo velocity during this data run as compared to the data run of Plot C.6a and C.6b.

When tie pogo frequency is changed in the filter, such that there is a mismatch

between truth and model pogo frequency and filter-assumed frequency, the filter loses

its ability to track this state. The plots of filter states 1, 2, 3, 4, 5, 6, and 9 are

"close" to what is seen in Plots C.1,2,3,4,7, and 8 and are not shown.

Error statistics analysis of Tables 5.2 and 5.3 show that the two data runs are

close for the center-of-mass position and velocity states, the atmospheric states, the

offset state, and the centroid statistics. The pogo position of the high frequency filter

is better than the artificially informed filter, even though the tracking is obviously

off (Plot C.10). The most volatile state for this simulation is the pogo velocity state,

which has a much greater error in the high fi-equency filter, due to the erroneous

filter-assumed pogo frequency (and note that the velocity is not updated directly with

a measurement, unlike the pogo position). The tins error is almost five *imes as

great for this high frequency filter (Pogo position and velocity data are summarized

in Table 5.4).
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State Mean Error (t) Mean Error (t, ) STD. DEV. STD. DEV.
_a(t) a(t*)

X Position* 0.061 0.062 0.429 0.403

Y Position* 0.071 0.072 0.335 0.309

X Velocity 0.032 0.027 0.276 2.763

Y Velocity 0.037 0.025 2.478 2.472

X Jitter 0.021 0.022 0.427 0.396

Y Jitter 0.025 0.023 0.469 0.452

Pogo Position# 0.005 0.005 0.133 0.137

Pogo Velocity# 0.064 0.056 4.531 4.558

Offset Distance# 0.040 0.043 0.541 0.541

X Centroid 0.039 0.038 0,446 0.434

Y Centroid 0.110 0.115 0.595 0.596

Table 5.3 Time-Averaged Error Statistics for Elemental Filter

(Truth = 0,112d'n, Filter = 0.112/20n)

*X and Y Hardbody Center-of-Mass

#Measured in the Direction of the Velocity Vector

The filter parameter values are then changed to 1,12/2rc (Point at the upper left

coiner in Figure 5.2) to produce the data runs shown in Plots C.13-16. Again, the

pogo position and velocity sates are different in the 'wigh" amplitude filter. hi plots

C.13b mid C.14b, the errors don't "settle" as much as the eA-rors in Plots C.Sb and

C.6b. This result is analytically seen from the comparison of the pogo position and

velocity states of Table 5.4. The enors fiom this new filter are approximately 35%

greater in the pogo position state and approximately 76% greater in the pogo velocity

state. Comparison of the residual output graphs of C.15 (new filter erroneously based
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Filter Parameter Values Pogo Position Error o(t)* Pogo Velocity Error a(ti*)*

0.112/2n 0.176 1.100
(Filter = Truth)

0.112/20n 0.137 4.558

1.12/2n 0.236 1.943

1.12120n 0.285 16.471

Table 5.4 Summary of the Pogo Position and Pogo Velocity Errors for Truth Condition of
0.112/2n with Various Filter Parameter Values

*Errors at time, t,, were very similar to the error at time, t, for all simulations.

on higher amplitude pogo assumption) and C.9 (correct filter/truth model agreement

on pogo amplitude) show almost no difference. If anything, the residuals of the

"incorrect" filter (C.15) are better than the "correct" filter residuals (C.9).

Again, the output graphs of filter states 1, 2, 3, 4, 5, 6, mid 9 and the x- and

y centroid error are similar enough not to be shown. It should be noted that, for this

simulation, the "incorrect" filter has about a 10% smaller error on the y- direction

center-ofmass state. This possibly accounts for the. laser residual seeming to be

slightb better for the "inconect" filter versus the "correct" filter.

The filter parameter values are then changed to 1.1220a (Upper right point

in Figure 6.2) to produce the output plots of C.16 - C.18. The pogo position filter

state (C.16a) and the pogo velocity filter state (C.17a) have been misinformed of both

the truth condition amplitude and frequency. Comparison of atistical error values
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of these states in Table 5.4 bear this out. The velocity state error is particularly

obtuse as the error for the "incorrect" filter is approximately 15 times the error for

the correct filter. Note the pogo velocity errors from Table 5.4; incorrect frequency

seems much more critical than the incorrect amplitude assumption. Close analysis

of the residual plots (C.18 for "incorrect" filter, C.9 for the "correct" filter) show that

the "incorrect" filter residuals are slightly worse. The difference is almost

imperceptible.

5.2.2.2 Truth Parameter Values: Low Amplitude, High Frequency. The filter

is artificially informed of the correct truth conditions, an amplitude of 0.112 pixels

and a frequency of 20R radians per second, to produce the output filter state plots,

D.1 through D.9, of Appendix D. These filter state error plots will not be as

rigorously analyzed as was done in Section 5.2.21; just the important trends will be

explored. The enr plots of the hardbody center-of-mass position and velocity states

(Filter states 1-4 plotted in Figures D.1a, D.lb, D.2a, and D.2b) and the error plots

for the two atmospheric states (Filter states 5 and 6 plotted in Figures D.3b and

D.4b) are zero-.mean with well-behaved plusminus one sigma characteristics (filter.

predicted one-sigma is close to the filter-vermus-actual error plus/ainus one sigma).

The pogo poasiton mid velocity states (Filter states I and 8 plotted in Figures D.6 and

D.6) show that the filter tracks the true pogo position and velocity pretty well. Plots

D.6a and D.6a show this result clearly, as the filter mean vilues match the true

coniditions. Filter state 9, the offset distance between the plume centroid equilibrium
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point and the hardbody center-on-mass, is plotted in Fig-ace D.7, where the filter

oscillates over the true condition of 2.92 pixels. The error plot of D.7b is zero-mean

and non-divergent, with a plus one-sigma that is outside of the filter-predicted one-

sigma. '. is is again due to the tight filter tuning. The linear combination centroid

error plots, D.8a and D.8b, are both zero-mean. Table 5.5 shows the explicit error

statistics for all of the filter states.

The filter parameter values are changed to 0.11212n to produce a full set of

error plots for all of the filter states. For brevity, only the plots that emphasize

State Moan Error (t,) Mean Error (ti) STD. DEV. STD. DEV.Oft,) Oil '

X Positioi 0.031 0 031 0.444 0.418

Y POSiton* 00156 0. (8 0327 0304

X VCOt 0.034 0.028 2.795f 2.7912

Y Velocity 0A38 0.02 2.499 2,494

X Jitter 0. 0 0 023 0.428 0.398

Y Jittir 0()25 0,23 0,468 OA14

'( !o Position# 0.102 0.02 0.09. 0.096

go Velocity* 0,416 0,055 6.262 6.208

Off-set iistance# 0.021 O,.03 0.514 0,514

X Centrod 0.021 0.019 0.447 0.435

Y C(entroid 0.076 0,081 0.78 0.5i79

Ilable 5.5 Tine-Averuged Error Statistks for tiimei",a1 Fiter
(Truth 0.112t20n, Filter= O.112t20n)

OX and Y Ilardbody Center-uo-Masq
IMosu W iii the Diwirctola of the Velocity Vector
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an important trend will be shown. The new "incorrect" (the filter assumes a low

frequency for the pogo) low frequency plots of filter states 7 and 8 (Pogo position and

velocity states) are plotted in Figures D.10 and D.11. The low amplitude/low

frequency filter does not do a good job of precise tracking of the position of this low

amplitude/high frequency truth conditirn (Plot D.11a). The pogo position error is

almost twice the position error of the "correct" filter. This is also seen from

comparison of the error statistics of Table 5.6. The pogo position and velocity state

error for the "artificially" informed filter and the various other filter pararneter values

of this section are summarized in Table 5.6. The pogo velocity state error, which is

the usual problem, is within reasonable tolerance. There is little difference between

the residual output plots of D.9 Corect" filter) and D,11 (Incorrect" filter).

FIter Paranwetr Values N~* Position Ermer at,) IPo Velocity ... r offT
O, !12t20n, 0.096 6120S

(Filter - Tyuth)
,0,1 I 2r 0.166 6.471-

(LU20n 0,261)

Table 5.6 Summary of the Poo lPition and l~o Velocity Enrla tbr Tuth CWAAitiUU of
0I21WOm with Vtuiouw lFilter Poxameter Values

*EA at inme, t,, W f y simikr to the eMr at fia, t,'. fr all Simulaioa1S.
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The filter values are changed to 1.1 2/20n to produce a full set of plots, but just

the pogo position and velocity filter state plots will be shown, as the others are

similar to the plots from the "correct" filter. The pogo position and pogo velocity

(Figures D.12a and D.13a) plots show that the filter knows the frequency but is

missing the pogo amplitude (as expected from the programmed filter parameter

values). The womparison of the error statistics of Table 5.6 also show this, as both

states have more than double the errok standard deviations. There is a slight, barely

perceptible difference in the FUR (2) residual of D.9 ("Correct" filter) and D.14

("Incorrect" filter).

The filter values are changed to 0112/2n (Both values are different from the

t4'uth values) to produce Appendices D.15- D.17. The" incorrect" filter is off in both

frequency and amplitude for both the pogo position and velocity states. The errors

of Table 6.6 are not as different from the "correct" filter statistical errors as might be

expected. The position state errors are still off by a factor of 2.6, but the velocity

state enr is cow. The residual plots ae again very cloe with no perceptible

difference.

5.2.2.3 VLath Paranwier Valww: Large Amplitude, Low ,iquem-y. The plots

for the filter parmneter values that equal the truth conditions are located in Plots E.1

through E.9 of Appendix E. Filter states 1 aid 2 (igure E.i) show some exitursions

from the filter-predicted plus/niinus one sigma as the greater dynimit. conditions
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come into play, but no divergence is seen. The FUR x- and y- velocity states are

contained within the filter-preeicted plus/minus one sigma (Figure E.2). The

atmospheri, states of E.3 and E.4 are very similar to what is seen throughout this

chapter. The pogo position and velocity states are much more interesting with the

higher amplitude. The filter pogo follows the truth pogo very well in both the

positicn and velocity states (E.5a and E.6a), with both of their error plots being zero-

merm with the filter-predicted one-sigma near the filter-versus-actual error

plus/minus one sigma. The filter does a nice job of predicting the offset state 9

(Figure E.7), with this error also being zero-mean. T centroid prediction plots are

also zero-mean, with some excursions from zero due to the higher dynamics. The

statistical errors for all of the filter states of this "artificially" informed filter are

A.umnarized in Table 5.7.

The filter is then set to 1.12/207 to produce a full set of charts, with only the

interesting plots shown. The pogo position plot of E.10 and pogo velocity plot of E.11

show that, as expected, the filter cannot track the slow amplitude truth condition.

The filter residual outputs of E.9 ("Correct" filter) and E.12 ("Incorrect" filter) show

a now visual difference ia the residuals for these two simulations.
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State Mean Error (t) Mean Error (t) STD. DEV. STD. DEV.
00d__ a(ti*)

X Position* 0.099 0.099 0.763 0.756

Y Position* 0.061 0.062 1.207 1.186

X Velocity 0.042 0.040 2.851 2.843

Y Velocity 0.018 0.008 3.408 3.405

X Jitter 0.019 0.020 0.435 0.410

Y Jitter 0.023 0.021 0.475 0.452

Pogo Position# 0.045 0.045 0.500 0.491

Pogo Velocity# 0.011 0.019 3.893 3.815

Offset Distance# 0.066 0.069 0.674 0.675

X Centroid 0.046 0.045 0.756 0.748

Y Centroid 0.160 0.163 1.186 1.162

Table 5.7 Time-Averaged Error Statistics for Elemental Filter
(Truth = 1.12/2n, Filter = 1.12/2R)

*X and Y Hardbody Center-of-Mass
#Measured in the Direction of the Velocity Vector

The higher dynamics has induced larger errors when the filter is using an

incorrezt parameter value. Filter states 1-3 have errors of 0.956, 1.353, and 3.431

pixels (compared to the values of 0.756, 1.186, and 2.843 in Table 5.7), which are

approximately 0% higher than the errors for the simulation in which the truth and

filter parameter values are equal. The largest errors are still seen in the pogo

position and velocity states, as shown in Table 5.8. Table 5.8 summarizes tle pogo

position and velocity errors for all of the various filter parameter values for the truth

condition of 1.12/2u. Again, note the large pogo velocity errors for the filters which

assume a wrong pogo frequency.
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Filter Parameter Values Pogo Position Error a(ti*)* Pogo Velocity Error a(t')*

1.12/2n 0.491 3.815
(Filter = Truth)

1.12/20n 1.120 24.967

0.112/2n 1.130 6.957

0.112/20n 1.157 11.465

Table 5.8 Summary of the Pogo Position and Pogo Velocity Errors for Truth Condition of
1.12/2g with Variuus Filter Parameter Values

*Errors at time, t , were very similar to the error at time, ti*, for all simulations.

The new filter parameter values are set at 0.112/2n. Again the most

interesting output plots are the pogo position and velocity states, which are located

in E.13 - E.15. The small amplitude filter does not keep up with the truth condition

in either the position or velocity graphs, as expected. There is a very slight difference

in output residual plots of E.9 ("Correct" filter) and E.15 ("Incorrect" filter). The error

statistics, summarized in Table 5.8, show twice the error on the pogo position state

and slightly below twice the error on the pogo velocity state.

The next filter parameter values are 0.112/20it (both values different from the

truth conditions), which yield plots that are shown in Figures E.16 - E.18. This

small amplitude, high frequenuy filter is unable to track the true pogo positien and

velocity states (E.16a and E17a). The error statistic comparison of Tables 6.8 also

shows this error. The FUR residual plots of E.9 ("Correct" filter) and D.18

("Incorrect" filter) show a slightly perceptible difference in the FLIUR residuals, with

the laser residual having a visible difference.
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5.2.2.4 Truth Parameter Values: Large Amplitude, High Frequency. The full

set of filter plots for the simulation in which the filter conditions match the truth

conditions are shown in Figures F.1 through F.9 of Appendix F. The filter states 1

and 2 plots of F.1 show the very tight tuning and yet no divergence. The pogo

position and velocity plots show the filter keeping up with the truth condition in

amplitude and phase (F.5a and F.6a). Even in this extremely highly dynamic

environment, the filter has a good estimate of the offset distance (F.7). The error

statistics are shown in Table 5.9 for comparison purposes.

State Mean Error (t,) Mean Error (t1) STD. DEV. STD. DEV.
_(t,) a(t,')

X Position* 0.054 0.053 0.691 0.679

Y Position* 0.052 0.050 0.990 1.003

X Velocity 0.116 0.108 2.51 2.951

Y Velocity 0.084 0.073 2.448 2,446

X Jitter 0,012 0.010 0.422 0.388

Y Jitter 0,033 0.033 .0471 0,452

Pogo Position# 0,017 0.022 0.491 0,393

Pogo Velocity# 0,562 0248 33.7 3 29.242

Offset DistanceO 0.110 0.111 0.433 0.434

X Centroid 0.012 0.016 0.646 0.653

Y Centroid 0.058 0.065 0.941 0.994

Table 5.9 Time-Averaged Error Statistics for Elemental Filter
(Thuth = 1.12/20N Filter 1.12/20n)

*X and Y Hardbody Center-of-Mass
#Measured in the Directon of the Velocity Vector
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The filter values are set at the different conditions of: 1.12/2n, 0.112/20n, and

0.11 2/2 n, with the pogo position and velocity states plotted in Figures F.10 - F.12

(Filter = 1.12/2n), F.13 -F.15 (Filter = 0.112/20n), and F.16 - F.18 (Filter = 0.112/2n).

The same trends th %t were seen in the preceding sections where the pogo position

and velocity states inadequately track the truth condition are seen in the graphical

plots of Figures F.10 - F.18 and in the compiled error statistics of Table 5.10 for this

extreme, highly dynamic case. Comparison of the filter residual of F.9 ("Correct"

filter) versus the FLIR residuals of F.12, F.15, and F.1.8 ("Incorrect" filters) yields a

major point of this research, as there is a discernible difference in residuals of the

filter with the correct versus incorrect parameter values. This information is used

for the choices of the MMAE configurations.

Filter Parameter Valuem Pogo Positioi Error a(t,)* Pogo Velocity Error aft,*)*

1,1220n 0.393 29.242
(Filter =Truth)

112/2n 1,026 65,211

0 112/20n 0.697 45.810

0.11 22n L044 64,284ILI

Table 5.10 Summ uny of the Pego Position and Poo Velocity Errors for Truth Condition of
1.12/20n with Various Filter Parameter Values

Erors at tUme, t,, wete very similar to the error at time, t,% for all simulations.
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5.2.3 Selection of Candidate MMAE Configurations. The criterion for selection

of the different test MMAE configurations is that the appropriate discretization of the

parameter space is based upon the residuals of the respective single-filter

simulations. The residuals of two filters (one filter's parameter values being equal

to the truth parameter values, the other having parameter values equal to one of the

other proposed elemental filters) are compared at a certain truth condition to see if

there is a difference in their residuals. These residuals will be used in the probability

calculations for each of the respective filters within the MMAE algorithm.

The residuals from the filters on the constant 1.12 amplitude line (Frequency

= 2, 20n) are visibly different at each of the respective truth conditions (1.12/2n,

1.12/20) and thus are candidates for elemental filters in the MMAE configuration.

At the lower amplitude truth conditions, none of the residuals are different enough

from each other to include or discard either of the two low amplitude elemental filters

automatically. This leads to three different configurations: two different 3-filter

models and a 4-filter model. The 3-filter MMAE models should definitely include the

elemental filters on the constant 1.1- amplitude line and perhaps one of the low

amplitude filters per MMAE model, thus making two candidate MMAE

configurations. The other coifiguration is a 4-filter model that would include both

elementall flters on the constant 1.12 amplitude line and both elemental filters on the

constant 0.112 amplitude line.
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Another different 3-filter configuration stems from the comparative results of

Tables 5.4, 5.8, and 5.10. The greater pogo velocity errors are those for cases in

which the "incorrect" filter frequency is different from the "correct" filter frequency.

This would lead to having three different frequencies for each of the chosen elemental

fiters in the MMAE configuration (This error result is not seen for the case of Table

5.6). A third low amplitude MMAE configuration is suggested to include the two high

amplitude filters as already analyzed, and a new low amplitude filter with a

fiequency of 11n (bisecting the 2t-20u constant 0.112 amplitude line). Thus, the two

lage amplitude filters would be. readily distinguishable from each other due to

assumed frequency for the pogo,.-and a single filter would handle the lower amplitude

pogo oscillations with an intermediate frequency to be representative of the physical

range of possibilities.

Another powible MMAE configuration stems from earlier work in this research

line, when the tracking of tactical wmisiles was investigated. A 5-filter MMAE model

would include even higher amplitude filtere (with an assumed pogo amplitude of 2.24

pixels) at frequencies of 2n and 20i, along with the filters of 1.12/2n, 1.12120n, and

O.112/11n. This new high amplitude is not physically motivated (2.24 pixels = 60

meters at the range of 2,000 kiloietes too large a realistic pogo effect) for this

particular problem, but scaling of p maraete and adaptation schemes using a larger

tracking window (24 x 24 versus xB tracking window for this problem) could make

this MMAE filter configuration applicable.
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5.3 MMAE Simulation Results and Analysis

5.3.1 Introduction. The basic purpose for this research is to generate a

working MMAE model that is robust in parameter identification and has performance

capabilities that are close to the "best" that can be done at a particular real world

truth condition. The parameter identification will be enhanced through appropriate

discretization of the parameter space, as introduced in Figure 5.2. The proper

discretization is carried out by investigating the probability calculations of each of the

elemental filters in the MMAE bank: the filter with the highest calculated probability

should be the filter with the parameter values which are closest to the real world true

parameter values.

The actual implementation of this J4MAE model is shown by the block diagram

of Figure 5.1 except the Kalman filter block is replaced with the MMAE algorithm

composed of several Kalman filters running in parallel. The different configurations

of this MMAE algorithm that were introduced in Section 5.2.3 are listed in Table

5.11. Sections 5.3.2-6 detail the results and performance analysis from the computer

simulations of the different configurations of Table 5.11

As Figure 5.2 showed, five points were considered for the elemental filters of

an MMAE algorithm. The two upper points are essential to performance because
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Number of Filter Parameter Values - Amplitude-Frequency of Oscillation
Filters

Config #1 3 0.112-20n 1.12-2n 1.12-207c

Config #2 3 0.112-2n 1.12-2n 1.12-20n

Config #3 3 0.112-1in 1.12-2n 1.12-20n

Config #4 4 0.112-2n 0.112-20n 1.12-2n 1.12-20

Config #5 5 0.112-1In 1.12-2n 1.12-20n 2.24-2n 2.24-20n

Table 5.11 Test MMAE Configuration

at the higher amplitude, it pays to estimate pogo, as the two points yield very

distinguishable residuals. Chronologically, the four corner points were considered,

then one or the other low amplitude points was removed, and finally, three points

were considered, but with the low amplitude filter assuming the intermediate

frequency at 1V r.

A side issue is explored concerning the probability density function calculation

of Equations (2.30) and (2.31). These equations contain the covariance of the

residuals, Ak(t), in the leading coefficient aid the exponent of the density functioi.

In previous work [36], the results improved when this covariance has been stripped

out of this calculation. In other words, the probability calculation could be carried

out without using the leading coefficient, or with A4() removed from the exponential

term of Equation (2.31) as well. This issue will be explored in Section 5.3.2, with

Sections 5.3.3-6 using the method that yields the best parameter identification
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results. The conclusion that is reached from this exercise is that the best parameter

identification results are seen when the leading coefficient is removed and the

covariance of the r siduals, A4(t), is removed from the exponent in the calculation of

Equations (2.30) and (2.31). This conclusion is thought to be based on the possibility

that the Ak() matrix is ill-conditioned.

5.3.2 MMAE Configuration #1 (Filter Parameter Values: 0.112 /20n, 1.12 /21;

1.12 /20t. This MMAE filter configuration is tested at various truth conditions with

5-run Monte Carlo (MC) simulations and is shown pictorially in Figure 5.3. The

tested truth conditions will first be the three parameter values of the included

elemental filters, to analyze the effectiveness of the configuration against known

conditions. The following data runs will be with truth conditions that are chosen to

explore the discretization of the parameter space. Each of the simulations in this

section will be run three different times to investigate the effect of the covariance of

the residuals on the probability calculations. The first run will have the leading

coefficient and the covariance of the residuals, Ak(t), intact in the calculation of

Equation (2.31). The second run will have the leading coefficient stripped from

Equation (2.31). The third run will have the coefficient and Ak(t) eliminated

completely from Equation (2.31). These simulations will be analyzed fo performance

of the filter and for proper discretization of the parameter space. Performance of the

filter will also be compared to the single-filter runs from Section 5.2.
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- Elemental Filters
Filter #1 - 0.11 2/20i Parameter Space
Filter #2 - 1.1 22n
Filter #3 - 1.1220s

1.120--

Plume Pogo 0.784

Amplitude

0,448 -

0.112

2z 11% 20n

Plume Pogo Frequency

Figure 5.3 Configuration #1 Parameter Space

The output graphical results for this section are presented in Appendix G. Due

to the large number of output plots, only the plots that support important trends will

be presented. The important graphs from this section are the full set of plots that

display each of the Bayesian blended states for comparison to the previous sections'

plots at each truth condition. This full set of plots will be the simulation in which the

coefficient is removed and the covariance of the residuals is stripped from the

exponential calculation of Equation (2.31). This method provided the most consistent

and true probability calculation for the discretization of the parameter space, which
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is shown by the "averaged probability" output plots from each elemental filter of the

MMAE configuration (see, for instance, Figures G.9 through G.11). The performance

of this filter configuration is compared to that of the single filter with the "artificially"

informed parameter values. The same compilation of the error statistics from the

simulations in which there is no leading coefficient and no Ak(t) is shown for

comparison to the data runs from Section 5.2.

5.3.2.1 Configuration #1 Run with Truth Parameter Values = 0.112/20% The

parameter space and the MMAE Configuration #1 are shown in Figure 5.3. This is

the space in which this configuration #1 will attempt to operate.

Figures G.1 - G.8 show the output of MMAE filter states 1-9 and the linear

combination centroid plots. These plots should be compared to plots of the

"artificially" informed filter run at this truth condition (Figures DA - D.8, in

Appendix D). The plots from the MMAE cfigwration compare very well against all

of the single filter plots from the "artificially" informed filter. The noticeable

difference is in the pogo position and velocity states (G.Sa and G.6a versus D.6a and

D.6a), in which the filter estimates in the MMAE plots appear to be overshooting in

amplitude the truth data although the filter-predicted plus/minus one sigma contains

the filter-versus-actual error in plots G.5b and G.6b.
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The statistical errors compiled in Table 5.12 also show that this MMAE

configuration does a good job of tracking on all states when compared to the error

statistics of the "artificially" informed filter (Table 5.5). The differences in the pogo

position and velocity states are seen in the error statistics as the MMAE produces

almost twice the position error and about a 20% higher velocity error.

The "averaged probability" plots compare the output probabilities of the three

elemental filters, defined in Figure 5.3, when the simulation uses the three different

State Meatn Error (ti) Mean Enor (t,') STD. DEV. STD. DEV.
_ _ __Gt ,) c(t*) I

X Position* 0.016 0.016 0.442 0.416

Y Positiol* A5 0.047 0.299 0.278

X Velocity 0.019 0.013 2734 2.731

Y Velocity 0,071 0-058 2.404 2,401

X Jittr 0,020 0.021 0.427 0394

Y Jitter 0,025 O.O22 0.462 0.441

Pogo Position# 0,001 0,000 0.170 0.171

PooVelocityiI 0,131 0.066 MIA .6t

Offst Dista"I'e# 0.028 0.030 0.409 0.409

X Centroid 0.004 0.002 0.449 0.432

Y Centroid 0.069 0.074 0,528 0.618

Table 5,12 Tlie-Averajged Ero Statistics for MMAE Coadigurutioa #
(Truth = 0.11220W)

OX wid Y Hardbody Cnter-of'-Mts
#Meaiuwed in the Dirction of the Velocity Vector
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methods of the probability density function calculation. Figure G.9 shows the

averaged probabilities (over the 5 MC runs) of the case where the leading coefficient

is stripped off and the residual covariance, Ak(t), is not used in the exponent

calculation. All tluee of the filters take a share of the probabilities, no one filter

dominates and certainly not filter #1, for which this truth condition matches. Plot

G.10 shows the case where the coefficient is used and Ak(t) is used in the exponent.

Filter #2 looks to win out over the other two filters although the other two filters do

take some of the probability. Figure G.11 shows the case where the coefficient is

stripped from the calculation of Equation (2.31). These plots show the wrong Filter

#3 taking all of the probability almoat immediately. Despite this difficulty in

correctly identifying the "correct" discrete parameter point, the state estimation does

not suffer terribly due to small amplitude pogo (seen from comparison of Tables 5.5

and 8.12).

5.3.2.2 Configurawwo #1 Run with Truth Parameter VaLue= 1. 12 /2- Vigures

G.12 - G.19 show the output graphs of all of the Wyesian blended filter states. These

plots should be compared against Figures E.1 - E.8 from Appendix E. the outputs

from the single filter run in which the filter conditions equal the true condition. The

plots from the MIME compare favorably with the single filter plots (despite an

unexplained glitch in the data just after the six cod point). On the pogo position

and pogo velocity plots (G.16, G.17, E.6, aid E.6), the MMAE filter estinmte is not
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quite as good as the single-filter pogo position estimate. This is reflected in the error

compilations of Table 5.13 and Table 5.8.

The averaged probability plots of G.20 - G.22 show that when the coefficient

is not used and Ak(t) is not used in the exponent (G.20), the correct filter (Elemental

filter #2) takes over the majority of the probability with a steady gain over the course

of the simulation. The probability stays above the 50% mark at approximately one

and a half seconds (90 sample periods). The plot where the coefficient and Ak(t) are

State Mean Error (t) Mean Error (ti*) STD. DEV. STD. DEV.
(ta) 000 )

X Position* 0.147 0.148 0.881 0.866

Y Position* 0.107 0.105 1.378 1.357

X Velocity 0.027 0.028 3.097 3.089

Y Velocity 0.026 0.023 3.490 3.494

X Jitter 0.019 0.020 0.432 0.407

Y Jitter 0.028 0.027 0.467 0.443

Pogo Position# 0.024 0.023 0.579 0.569

P.€;v Veloc: -' 0.015 0.177 4,213 4.619

Offset Distance# 0.177 0.177 0.897 0.899

X Centroid 0.051 0.0C 0.759 0.752

Centroid 0.070 0.071 1.211 1.190

Table 5.13 Time-Averaged Error Statistics for MMAE Configuration #1
(Truth = 1.12)

*X and Y Haidbody Center-of-Mass
#Measured in the Direction of the Velocity Vector
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ued (G.21) show the correct filter #2 taking the majority of the time. The filter #2

probability curve is not as smooth or consistent as was seen in q.20. Figure G.22

depicts the case where the coefficient is not used in Eqation (2.31). The wrong filter

#3 has most of the probability until the end of the simulation, when filter #2 takes

some probability.

5.3.2.3 Configuration #1 Run with Truth Parameter Values = 1.12/20.

Figures G.23 - G.30 depict the output filter states that should be compared to the

single-filter results in Figures F.I - F.8 of Appendix F. The robustness of the MMAE

is shown in the very favorable comparison between these sets of output plots. The

error statistical comparison between the data of Tables 5.14 and 6.9 show that the

errors in all of the filter states are extremely close (except the MMAE has a smaller

error on the offset filter state 9).

The averaged probability plots of G.31 - G.33 show that all cases have the

correct elemental filter taking almost all of the probability in a very short time. The

plot corresponding to the case in which the coefficient and Ah(t), are not used (G.31)

is less noisy than the plot where Equation (2.31) is intact (G.32) and the plot where

just the coefficient is stripped off (G.33).
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State Mean Error (t1) Mean Error (t,) STD. DEV. STD. DEV.
a(tj) G(t[)

X Position* 0.076 0.074 0.681 0.669

Y Position* 0.007 0.009 0.984 0.999

X Velocity 0.143 0.135 2.977 2.975

Y Velocity 0.064 0.053 2.491 2.487

X Jitter 0.008 0.005 0.420 0.387

Y Jitter 0.035 0.035 0.472 0.456

Pogo Position# 0.019 0.023 0.491 0.402

Pogo Velocity# 0.592 0.172 34.032 29.645

Offset Distance# 0.107 0.108 0.370 0.371

X Centroid 0.010 0.005 0.646 0.653

Y Centroid 0.115 0.122 0.936 0.981

Table 5.14 Time-Averaged Error Statistics for MMAE Configuration #1
(Truth = 1.12120n)

*X and Y Hardbody Center-of-Mass

#Measured in the Direction of the Velocity Vector

6.3.2.4 Discretization of Parameter Space for Configuration #Q. Discretization

of the parameter space of Figure 5.3 is continued by selecting several sets of truth

parameter values to run through the MMAE configuration #1. The averaged

probabilities are plotted, with the sum total of these output graphs defining the

analysis of this discretized parameter space. The plots of the last three sections

reveal that filter #1 did not take the total probability; therefore, concentration will

be initially place on the constant 1.12 amplitude line. Only the plots of the

probabilities calculated using the method in which the leading coefficient and Ak(t)

5-34



of Equation (2.31) are not used have been included. This method provided

consistently better parameter identification results. The chosen truth conditions and

the Appendix location of the output probability plots are summarized in Table 5.15.

As the constant amplitude 1.12 line is traversed, it is seen that, indeed the

parameter space is divided between the two high amplitude filters. At the

frequencies of 4n, 8n, and 9.5n, filter #2 takes the majority of the probability. Filter

#3 starts to take over at a frequency between 9.5n and 11n (the point seems to be

closer to 11E from the shape of the graphs). As the amplitude is decreased along the

constant 20n line, it is seen from Plots G.39 - G.40 that Filter #1 is never able to take

Truth Condition Filter with Modority of Appendix Location
Probability

1.12/4n 2 G,34

1.12/8n 2 G.35

1.12/9.5n 2 G.36

1.12/AIn 3 G-37

1.12/14n 3 G-38

0.784/20n 3 G39

0.448/20n 3 G,40

0.112/20n 2 Gol

Table 5.15 Configuration #1 at Various Truth Conditlons
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the majority of the probability. The output plots from the final point of Table 5.15

look very similar to the output plots of G.20 (Truth = 1.12/2n), despite the strange

result of Filter #2 attracting the majority of the probability for this point..

5.3.3 MMAE Configuration #2 (Filter Parameter Values: 0.112/27; 1.12/21;

1.12 /207r). This new 3-fMiter configuration is shown in the parameter space of Figure

5.4. Note that the two large-amplitude discrete points are retained from the previous

configuration, but that the small-amplitude discrete point is switched from high to

low frequency. Having both large-amplitude points is critical to performance, but it

seems that only one low-amplitude point is needed, and this configuration addressez

sensitivity to placement of that small-amplitude point. The analysis of this section

will focus on the discretization of this parameter space, especially as it compares to

that of the previous configuration. The filter state output plots from this 3-filter

configuration (at the three truth conditions corresponding to the conditions assumed

by each of the three elemental filters) compare to the output plots from the "correct"

single-filter run (Truth conditions = Filter conditions) just as favorably as was seen

in Section 5.3.2 and thus will not be shown. The error statistics for this MMAE and

the single-filtew run also matched as well as was seen in the last section and again

will not be presented.
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10- Elemental FltersFilter #1 - 0.11212n Parameter Space
Filter #2- 1.1 2 i2 c
Filter #3 - 1.1 I20 1

Plume Pogo 0.784

Amplitude

0.448

0.112--

2n11 20a

Plume Pogo Frequent;,

Figure 5,4 Configuration #2 Parameter Space

The outr'ut probability plots from these MMAE runs are the graphs of

Appendix H. The actual truth conditions against which confturation #2 was run are

umsumarued in Table 5.16 with the Appendix location of these plots.

The results from analyzing the plots of Appendix H show that the parameter

slace can be partially divided into sections in which one or the other large-amplitude
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Truth Condition Filter with Mqjority of Appendix Location
Probability

1.12/2n 2 H.

1.12/8n 2 R2

1.12/10n 2 -L3

1.12/10.5n 2 and 3 .4

1.12/11n 3 I-5

1.12/12n 3 H.6

1.12/14n 3 .7

1,12/20n 3 H.8

0.448/2n 2 19

0.112/2n 2 H.10

0.05/2n 2 .11

0.112/20,n 2 and 3 H.12

Table 5.16 MMAE Configuation #2 at Various Truth Conditions

filter dominates the probability calculation. There is a clear division where this

occurs along the constant 1.12 amplitude line. Filter #2 takes the majority of the

probability at a frequency of 10n while filter #3 gets the majority at 11n. The area

of I0 1-n is where this hardover shift occurs. Again, the filter #1 of this

configuration couldn't be forced to take over the probability even when the amplitude

went to 0.05 (H.11). The data run of the last entry of Table 6.16 shows a kind of

"nebulous" region where the probability is spread around among the filters.
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5.3.4 MMAE Configuration #3 (Filter Parameter Values: 0.112 /Il, 1.12 /2,

1.12 /20O.). The next logical configuration choice for a low amplitude filter was tried

in 3-filter MMAE configuration show in Figure 5.5. This configuration brought the

greatest success in the discretization of the total parameter space. The output plots

are located in Appendix I, with Table 5.17 summarizing all of the truth conditions

against which this configuration was run.

- Elemental Filters
Filter #1 - 0.11/1 1n Parameter Space
Filter #2 - 1.1 212n
Filter #3 - 1.12/20n

1.120 -

Plume Pogo 0.784

Amplitude

0.448--

0.112-- 0

2n 11% 20n

Plume Pogo Frequency

Figure 6.5 Configuration #3 Parameter Space
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Truth Condition Filter with Majority of Probability Appendix Location

1.1212n 2 1i

1.1 218n 2 1.2

11 219.5n 2 1.3

112/lln 1 1.4

1.12112.6n 1 and 3 1.5

112/14n 3 1.6

1-1 22On 3 1.7

0.784/2n 2 1.8

0,784/9.5n 2 19

0.784/10.56n 1 1.10

0.784/lIn 1 1.11

0.784/11.6n 1 1.12

0,784/12.5n 1 and 3 1.13

0.784/20n 3 1.14

0.448/2n 2 15

0.448t9.6n 1 and 2 1.16

0.448/lOSin 1, 2, and 3 I17

0.448/In 1 USB

0,448/12.Gn I and 3 119

0,448/l3n 3 1.20

O,448/20n 3 1.21

0.112/2a 1 and 2 1.22

O.l12111n 1 aud 2 1.23

0112/20F 1, 2, and 3 1,24

2,24/2rc 2 1.26

2.24/9,6n 2 126

224/11n 1 127

2,24/12,n 3 1,28

220420t 3 1,29

0,28/ln Iand 2 13O

0,W8J20nr 3 1,91

Table fl 7 UAE Coawt urtiou #3 at Vatwus Uuth (koditims
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The partitioning of this parameter space turns out to be dictated by the

frequency parameter, as is shown in Figure 5.6. In scanning the plots of Appendix I

along the constant amplitude lines of 1.12, 0.784, and 0.448, the low-frequency filter

takes the most probability at 9.5n for the three different amplitudes. An observation

to note is the startling similarities of the constant-frequency plots at 11n (1.4, 1.11,

and 1.18).

. Elementai Fites
Rlter #1 - 0.112/t1x Parameter Space
Filter #2 - 1.1.12n
Filter #3 - 1.12J20z

1.120- Filter0
#1

Space
Plume Pogo .76- FilteIr'Space Filter #3 ce
Amplitude7

0.40- -

0.112 -

2 11 2On

Plume Pogo Frequency

Figure 5.6 Discrelization of Paranrier Space Configuration #3
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Another region that has "similai probability plots i 21,ng the constant 0.112

line where filter #2 takes over at low frequencies witi filter #1 taking some

probahility at 2n, 11n, and 20n. This region was called a "nebulous" region because

there is no dominant filter. Plots 1.30 and 1.31 show an extension of this area. This

"frequency" discretization extends higher in amplitude as seen from scanning the

constant 2.24 amplitude plots of 1.26 - 1.29. Also, plot 1.31 shows filter #3's

dominance even at the low amplitude of 0.28 (chosen to be halfway between the

amplitudes of 0.11 and 0.448 pixels).

5.3.5 MMAE Configuration #4 (Filter Parameter Values: 0.112/27; 0.112 /207;

1.12/21; and 1.12 /201). This 4-filter MMAE configuration was partially explored for

the discretization of parameter space of Figure 5.7. The truth parameter values and

Appendix J location of the output plots are summarized in Table 5.18.

The results from this configuration show a definite break in the parameter

space along the constant 1.12 amplitude line between filter #3 and #4. The low

amplitude filters #1 and #2 never really took the probability, even when they were

(supposed to be) based upon the beat parameter values. This strange partitioning of

the parameter space is now expected, following the results from Section 5.3.3. It is

worthy of note how similar the plots are when traversing the 2n constant frequency

line (J.2, J.6, and J.10). Also interesting are the charts along the constant 20YE
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Filter #1 - 0.11 .2P
Filter #2 - 0.112/20%
Filter #3 - 1.12/2%
Fite& #4 - 1.12120% 1.120

Plume Po 0.784

Amplitude
0.448-

0.112- 0)

2n111 20z

Plume Pogo Frequency

Figure 6.7 Configuration #4 Parameter Space

frequency line. Starting from the highest amplitude and going to leswr amplitudes

along this line (1.12 - J.5, 0,784 - J.8, 0.448 - J.9, and 0.112 - L), the plots act as

they should, with the averaged probabilities of filters #2 and #4 pulling aJainst one

another for the probability (#4 "wind 'n J.6 and J.8, with #2 "winng" in 1.9). Then

the curious happens when the amplitude hits 0.112, where the "nebulous"' effect

deseibed in the preceding scction takes over.
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Truth Condition Filter with Majority of Appendix Location
Probability

1.12/2n 3 J.1

1.12/8n 3 J.2

1.12/111 4 J.3

1.12/14n 4 J.4

1.12/20n 4 J.5

0.112/2n 3 J6

0.112/20n 3 J.7

0.784/20n 4 J.8

0.448/20n 2 J.9

0.448/2n 3 J.10

Table 5.18 Conguratioa #4 with Various Truth Conditions

6.3.6 MMAE Configuration #5 (Filter Parameter Values: 0.112/IIr 1.12 /214

1.12/201; 2.24/2F, 2.24/20Wj. This last MMAE configuration was tried to see if the

filter could distinguish the truth conditions between the higher amplitudes of 1.12

versus 2.24 at the constant frequencies of 2 and 20n, and fiather, if there would be

any substantial benefit of including the two additional filters upon state estimation

precision. The paramneter space is shown in Figure 6.8, and Table 5.19 summarizes

the truth conditions that were used.

5-44



Truth Condition Filter with Majority of Appendix Location
Probability

1.12/2n 2 K1

2.24/2n 2 K2

1.12120n 3 K3

2.24/20n 3 K4

0.448/mn 1 K5

Table 5.19 Confoigration #5 with Various Truth Conditions

* Elemental Flters
Rter# .o.IIPn Parameter Space
ltk #2 - 1.12%

Rlter #3- 1.12J20n
FW #4 - .24/2i
F #5 - 2242o4

Plume Pogo

211 -1 20

Rums Pogo Frequen

Figure 5.8 C IU-ation #5 Parameter Space
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effect to be seen in other state estimat-s, including the estimate of hardbody location.

This chapter has shown that a working elemental filter exists that was successfully

used in several MMAE algorithm structures for the purpose of discretizing the two

dimensional parameter space of amplitude and frequency of oscillation of the plume

pogo phenomenon.
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V. Conclusions and Recommendations

6.1 Introduction

This chapter summarizes the final conclusions of this thesis and suggests areas

for futher study. Section 6.2 draws conclusions based on the results obtained in

Chapter V. Section 6.3 contains suggestions for continued research in applying this

FLI1/Low-Energy-Laser algorithm to the ballistic missile tracking problem.

6.2 Conclusions

Numerous conclusions have been made throughout this research. These

conclusions are presented in the following subsections.

6.2.1 Single-Filter Data Runs. The initial portion. of this work dealt with

becoming familiar with the FORTRAN computer program that implemented this

tracking scenario. The main purpose, in this beginning stage, was to test the four

(and an eventual fMth) proposed elemental filters to ensure that a working Multiple

Model Adaptive Estimation algorithm could be pursued. The task at hand was to get

the filter working properly. There were four seemingly minor errors found in the
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software that, when fixed, provided this working single-filter algorithm. The

interested reader is referred to the thesis advisor for the actual corrections to the

code.

The main and most important conclusion drawn from the first half of this

research is that the single-filter model works at the proposed filter parameter values

for amplitude and frequency of oscillation of the pogo phenomenon. This conclusion

is verified by the plots of Appendices C through F. The "wrongly" programmed filters

provide output according to these "wrong" input pogo parameter values, with the

higher errors seen on all of the states and especially the pogo position and velocity

states. The "correctly" programmed filters follow the truth model state il the

amplitude of the pogo is large enough (the "correct" filter is not really able to track

a small amplitude pogo value precisely, but it is not essential to be able to dr so at

such small amplitudes).

An obvious conclusion from these single-filter data runs is that residual.

monitoring of the Kalman filters is a powerful tool which is applied to this specific

tracking problem. The residual outputs from these single-filter data runs were

analyzed and then used to pick the "best" MMAE structure for this particular

problem. The lack of success with the 4-filter and 5-filter structures of this thsis

was predicted from the filter residual analysis. This is also the case for the partial

success of MMAE configurations #1 and #2 (two of the elemental filters were

6-2



programmed with the same frequency in these configurations). Residual monitoring

was a key ingredient to this research.

A final conclusion from these single-filter data runs comes from the necessity

of accomplishment of these baseline data runs. The single-filter error data from the

"artificially" informed Kalman filters was used as a benchmark for comparison: a

'best that can be done." Also, the plots of the individual states were comparison tools

for the completed MMAE. Going through this initial work was essential to the

success of this MMAE algorithm.

6.2.2 MMAE Data Runs. The success that is seen in the final portion of this

research is directly attributable to the residual-monitoring that has been described

throughout. MMAE configuration #3 was the most successful in partitioning the

parameter space. The clear boundaries of transition between the filters' probability

dominance is a little surprising because of the small difference in the residual

quantities. This configuration holds the most promise for an implementable

configuration.

An idea coming from the analysis of this parameter space points to an

"attraction of probability" that is seen or not seen in the MMAE configuration

outputs. There seems to be more parameter space probability attractability as the

pogo frequency and amplitude increase: as one goes highe, and to the right in the
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defined parameter space. This "obvious" idea is readily seen in the constant 0.112

and 1.12 amplitude lines. The differences between the residuals of the filters at

1.12/2n and 1.12/2 0n are very noticeable, while virtually no difference exists in the

residuals of the lower amplitude filters of 0.112/2n and 0.112/20n. Also, the constant

frequency lines of 2n and 20n partially dhow this idea, as there is a partial

partitioning that forms between the constant frequency filters of 1.12/20n and

0.112/20n in Configuration #1. This partial partitioning is not seen in the lower

frequency filters of 0.112/2n and 1.12/2n in Configuration #2. Finally, the transition

area along the constant 1.12 amplitude line for configurations #1 through #3 occurs

closer to the smaller frequency filter of 1.12/2n. The larger frequency filter of

1.12/20n is more dominant. These ideas point to a larger "attraction of probability"

as amplitude and frequency are increased in this parameter space.

Throughout this MMAE section, the dominant parameter value is frequency.

The parameter space is almost entirely partitioned according to this parameter. This

fact should be a consideration when this research line moves forward. This frequency

dominance is not surprising, and it even makes sense. It is essential in the tracking

of a signal to be in correct synchronization and phase with an incoming signal. The

tracker has no chance at all, if out of synchronization. If the amplitude is off, the

errors have larger deviations from the zero-error line but, the error signal cycles

through this zero-error line.
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The side issue that was explored in Section 5.2 showed a marked difference in

the probability results that were obtained from the three different probability

calculation methods. The method used throughout the main portion of the MMAE

runs is called Maximum Entropy with Identity Covariance (ME/I) [3]. The covariance

of the residuals is removed completely from the probability calculations by setting

this variable to the identity matrix. The covariance matrix is thought to be possibly

misrepresented due to model uncertainties, and thus to weight all residuals equally

in the probability calculatin, the covariance is set to identity.

6.2.3 Final Performance Issues. The MMAE algorithm Configuration #3 had

very comparable tracking statistics of filter states #1 and #2, the hardbody center-of-

mass, even when correct parameter identification broke down in the "nebulous," low

pogo amplitude region. These error statistics are shown in Tables 6.1 through 6.4.

When the truth parameter values resided in the nebulous region, all of the MMAE

individual states had error statistics very comparable to the "best" single-filter except

the pogo position state. The MMAE saw 33% higher errors than the 'best" single-

filter for this state. It is thought that the two higher amplitude/frequency filters were

causing this larger pogo error by artificially amplifying their own particular pogo

position error. When the truth conditions wore set to higher pogo amplitude values,

the pogo position errors revealed good agreement between the MMAE and the single-
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Truth = 0.112/2n Center-of-Mass Errors

Filter = Filter State #1 - x error Filter State #2 - y error

0.112/2n 0.402 0.313

1.19 /2n 0.395 0.280

0.112/20n 0.403 0.309

1.12/20n 0.417 0.291

MMAE Configuration #3 0.409 0.283

Table 6.1 Center-of-Mass Error Comparison; Truth = 0.11212n

Truth = 0.112/20n Center-of-Mass Errors

Filter = Filter State #1 - x error Filter State #2 - y error

0.112/20n 0.418 0.304

0.112/2n 0.408 0.381

1.12/20n 0.418 0.274

1.12/2n 0.421 0.286

MMAE Configuration #3 0.416 0.278

Table 6.2 Center-of-Mass Error Comparison; Truth = 0.112/20n

Truth = 1.12/2n Center-of-Mass Errors

Filter Filter State #1 - x error Filter State #2 - y error

1,12/2n 0.756 1.186

1.12/20 0.956 1.353

0.112/2n 0.878 1.437

0.1 12/20n 0.900 1.427

MMAE Configuration 3 0,804 1,244

Iale 6.3 Center-of-Mass Erar Comparison; Truth = 1.12/2g
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Truth = 1.12120n Center-of-Mass Errors

Filter = Filter State #1 - x error Filter State #2 - y error

1.12/20n 0.679 1.008

1.12/2n 0.788 1.091

0.112/20n 0769 1.174

0.112/2n 0.771 1.289

MMAE Configuration #3 0.671 0.991

Table 6.4 Center-of-Mass Error Comparison; Truth = 1.12120n

filter data runs. Again, the accuracy of estimating this pogo position state is

important, but not as critical as the tracking of the hardbody center-of-mass (filter

states #1 and #2).

6.3 Recommendations

This section concludes this thesis with a number of suggestions for future

research topics. The suggestions are divided into two major parts that are described

in the following subsedtions.

6.3.1 Further Research With Current MMAE Scheme. The most obvious

recommendation would be a direct follow-on thesis that further investigates the



partitioning of the parameter space using several different MMAE configurations.

The higher probability attracting areas could be exploited with the positioning of

more elemental filters to take advantage of the residual differences, to try to

minimize the tracking errors caused from the incorrect assumptions of the frequency

and amplitude parameter values. A possible suggestion for this different

configuration would be to have no low-amplitude filters, but to have all of the filters

programmed in a "one-dimensional" parameter space across the constant 1.12

amplitude line. A variation of this scheme would have one low-amplitude filter

programmed with an amplitude between the 1.12 and 0.112 values (0.448 or 0.784)

with a frequency that is different from 20 (approximately 14n, for the purpose of

exploiting the frequency partitioning phenomenon), along with the two high

amplitude filters of 1.12/2n and 1.12J20n. This configuration could take advantage

of the partial partitioning that was seen along the constant 20it line in Configuration

#1, while also taking advantage of the different frequency parameter values. This

new MMAE configuration's tracking errors would then be compared to the "best"

single-filter and the MMAE configuration #3 of this research.

The expansion of the parameter space higher in amplitude should also be

investigated if the tracking scenario should change. Divergence was Seen when

amplitude values of five times the current amnplitude values were programmed into

the filter. Although the higher amplitude pogo valuea were not physically motivating
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for this particular scenario, should the tracking range be changed to a value less than

the current 2,000 kilometers, such high pogo amplitudes could become a major factor.

6.3.2 Implementable Algorithms. A look to the future at this point might bring

further suggestions for research topics. The current MMAE scheme could be used to

estimate the pogo amplitude and frequency parameters. A single Kalman filter would

be used as a state estimator that would have the pogo parameters periodically

updated by parameter estimates from the MMAE algorithm.

Different tracking scenarios could also be accommodated with this particular

MMAE algorithm. Individual pixels on the 300 x 500 FLIR could be combined in

groups, then to be used as single pixels in some of the elemental filters of the MMAE

algorithm of this thesis. There would still be an 8 x 8 tUacking window, but each

pixel of this 8 x 8 window would be made up of a cluster of individual pixels. The

number of pixels per cluster could be scaled as a function of the range to a target.

This adaptation scheme would use an MMA algorithin similar to what is preseted

in this thesis.

6-9



Appendix A

Data Processing Statistics Method

This Appendix explans how tie statistics listed in the thesis and plotted in the succeeding

appendices were determ-ined. The equations for the sttscs and the data used to plot themi are

discussed.
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The performance of the Kalman filters used in this thesis is evaluated using multiple

Monte Carlo runs. A Monte Carlo analysis involves collecting statistical information generated

from simulating samples of stochastic processes [21]. Ten Monte Carlo runs are generally

considered sufficient to converge to the actual statistics that would result from an infinite number

of runs [9,24]. After collecting N samples of truth model and filter model data for each of N

Monte Carlo runs, the true error statistics can be approximated by computing the sample mean

error and error variance for the N runs. The sample mean error and error variance are computed

by:

1 N

N (A 1

Coo) -N - (A.2)oN -

where.

E (11) sample mew of the eror of intmt at inte I,

4(,t = sample error variance at tinte ti

truth model valuc of dwh variable of interest at tmic i, during simulation n

(4) =. filter cstinate of die variabte of inr"st at time t, during simulation in

N number of Monte Carlo ris
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The statistics are calculated before the measurement update at (:j) and after the update

at (:i+). In the performance plots displayed in Appendices B through E, the statistics at each

instant in time are plotted together; that is, the statistics before and after the measurement update

are plotted on the same time axis. They are reduced further to obtain average scalar values over

the time of the run, by temporally averaging the mean error and standard deviation (a) time

histories from two seconds into the simulation until the end. The first two seconds are not used

to ensure that the data reflects only steady state performance [9]. The errors are measured in

units of pixels, where a pixel is 15 microradians on a side (approximately 30 meters at a distance

of 2,000 kilometers).
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Appendix B

Examples of Performance Plots

This Appendix displays an example of the performance plots referenced throughout the

thesis. An explanation of the plot components and their meaning is also given.
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Two different types of data plots are presented in Appendices C through K to assess the

performance of the center-of-mass filters employed in this thesis. The first type of plot, the state

comparison plot shown in Figure B. 1(a), provides a direct comparison of the filter estimated and

true value of the state. For these plots, the ensemble average (over N Monte Carlo runs) of the

true value of the state is shown as a solid line. The ensemble average value of the filter estimate

at any instant in time is shown as a dashed line.

The second type of plot, the error statistics plot shown in figure B. 1(b), provides a

measure of the tracking performance. The plot shows the mean filter error, averaged over the

N Monte Carlo runs at each instant in time, for a state or variable of interest. In addition, thiz

type of plot displays the actual la (standard deviation) centered on the mean, or mean + la

curves. They are the two dotted lines that surround the mean cur. All the filters for this

thesis were designed to assume zero mean errors in all states, so the filter computed estimate of

standard deviation is plotted relative to the abscissa. The legend for the symbology in the error

statistics plots is shown here.

Mean Error

Mean Error I 1; .........

Zero ± Filter Computed la
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Appendix C

Filter Plots with Truth Parameter Values:

Amplitude = 0.112, Frequency = 2n

This appendix contains the state and error statistics plots of the nine-state elemental filters. The
data depicted in the two types of plots in this appendix are explained in Appendix A. The state
comparison plots show the sample mean truth state over the 5 Monte Carlo runs compared to the
same statistic for the filter estimate. The error statistics plots represent the error mean 
standard deviation values in pixels (or pixel/second for velocity and pogo velocity), of the errors
between the filter estimate and true state; true mean ± 1 true standard deviation are plotted,
along with zero i 1 filter-computed standard deviation.
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Appendix D

Filter Plots with Truth Parameter Values:

Amplitude = 0.112, Frequency = 20n

This appendix contains the state and error statistics plots of the nine-state elemental filters.
The data depicted in the two types of plots in this appendix are explained in Appendix A. The
state comparison plots show the sample mean truth state over the 5 Monte Carlo runs compared
to the same statistic for the filter estimate. The error statistics plots represent the error mean +
standard deviation values in pixels (or pixel/second for velocity and pogo velocity), of the errors
between the filter estimate and true state; true mean ± 1 true standard deviation are plotted,
along with zero 1 filter-computed standard deviation..
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Appendix E

Filter Plots with Truth Parameter Values:

Amplitude = 1.12, Frequency = 2a

This appendix contains the state and error statistics plots of the nine.state elemental filters.
The data depicted in the two types of plots in this appendix are explained in Appendix A. The
state comparison plots show the sample nica, truth state over the 5 Monte Carlo runs compared
to the same statistic for the ilter estimate. The error statistics plots represent the error mean +
standard deviation values in pixels (or pixeLlwcond for velocity and pogo velocity), of the errors
between the filter estituate and true state; true mean ± I trUe stanard deviation are plotted,
along with zeo ± filter-computed suadaJ deviation.
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Appendix F

Filter Plots with Truth Parameter Values:

Amplitude = 1.12, Frequency = 2Ot

This appendix contains the state and error statistics plots of the nine-state elemental filters.
The data depicted in the two Vqpe of plots i Oiis appendix are explaine, in Appendix A. The
state comparison plots show the truth state over the 5 Monte Carlo runs compared to the same
siatistic for the filter estimate. The error statistics plots represent the error mean ± standard
deviation values in pixels (or pixel/se=Ad for velocity and pogo velocity), of the errors between
the filter estimate and true state; true mean ± I true standard dviation are plotted, almig with
zero ± I filtw computed standard "viation.



i4 4

* 'A

t I V

time (ecotdt

(a) FILTER vs ACTUAL ERROR (X-POSITION)

............. ... ............. .. ~ ~

t~it

-2 ... ....

Atm (sectinds)
(bxITI sATA II YPOIIN

toor .IXYPoiii Ple Sae n )I~rrSaitc
0Iui .1i0,FkrI 22n



-&. '. . W

I aIs

0 A N 58

I~Is
I)o

0

time (seconds)
(b) FILTER vs ACTUAL ERROR (Y-VELOCHTY)

9 iueF2XYVlct Fle tts3ad4 ~rrSaitc



. ... filter

I . ... .. ... ...... ..... . . . .

.2 ... .. ....

30- --- . . . . . . . . . . . . . . . . . . ....... I .....

-".4
o 1 2 3 4 587

time (seconds)
(a) FILTER vs TRUE X-ATMOSPHERE

441 '5--...

. I

14-



.4
Ifiler

,3 ... .... ... .... .. . .. .... . .. .. . .. .. -- --- ---
Ii * I

. 2 ...... ... . ... . .- -- ... .. .. .....

0 2 3 456 7
time (seconids)

(a) FILTER vs TRUE Y-ATMOSPHERE-
1.5

0

~~. 44 .

0 1 234 67
time (seconds)

Mb FILTER ve ACTUAL ERROR (Y-AT?4OSPIERE)

Figure F.4 Y Atmlospheric Jitter (Filter State 6)
(tuth = 1.12i20x, Filter =1.12/20N)

F-5



...... filter

.. .. . , . . .. . . . .. . .. . . . . .- - - - .. . . .. . . . . . . . .

~ .u Lb bu*

4) 0

tie(seconds)
(a)FILER s TUEPOGO

6

f) 4

0

I I lo

0 2 6 7
time (seconds)

M FILTER va ACTUAL ERRIOR (100GO POSITION)

Fzigure 1-,s Pogo Positioo offst (Filter State 7)
(Trufli 1.12/20, Filter =1. 12/20x)

F-6



S80

4 1

0

-8-

10

0 0

IS

023 4 5 67
Ume (seconil.)

(b) FILTER vs ACTUAL ERROR (POGO VELOCITY)

1Figurc F.6 P~op Velocity (Vilter State 8)
(fruth =1.1 2120f, FillU = 1.1 2120n)

F-7



...... filter
.2 .. . . ...... .......... ............ ...................... ......

3... ........

.... ............. .. ... .. ..

2.8.

2.6 ........ ...... ....... . .....

0 1 23 4 5 6 7
time (seconds)

(a) FILTER vs TRUE COM-EQUILIBRIUM POINT OFFSET

*14

0

0 4% **-. =

M~ FITE va ACULERR(*-QILBINilTOBT

Fiur F. Cetro-ast qiirim0f4- -1 =9

-1.58



2

1 . .. ........5- ---------- ------------ ---- ---------------- ---------
----- --- --

1 ~LI rtill
*fil it I

--1 5------

-2
0 1 2 3 4 5 7

time (seconds)
(a) FILTER vs ACTUAL IERROR (X-CENTROID POSITION)

3

.. .. . .. .. . . . . . . . . . . . . . . .

IllNti I I 11,1N oi [lil

It It

0 12 3 4 587
time (seconds)

(b FILTER vs ACTUAL Eh- MR (Y-CENTROID POSITION)

A Figure F. 8 Plume Centroid Error Statistics
(Truth =1.1l2/20n~, Filter = 1. 12/20st)



44

3 .. ... .... .. .. .. ... .. . .. . ... .. . . . . . . --- ---

WiLi

G~ ...............

3 .. . . I .. . . . . - - - - . .. . . . . . .- . .I .. .. .. . . . . . ... . . . . . .

4 -4. .... .....

-4

F-31



.6.

.2~4 . ......

0 ll

0 .2 i*' wit~- --

0 1 2 3 4 56 7
time (seconds)

(a) FILTER vs TRUE POGO

3 ............ . . ......... I.......... .. .... .....

24 - . . . .

S, -Ai .011 1 . I2/2zA it 1. 1,2A"27c

I fil, lt Ok It Et F%. l t



4 . . ...

4) 2 .... ...

4)

0~ 0 1 2 3 4 867
time (seconds)

(a) FILTER vs TRUE POGO VELOCITY
300

ooil

0
6 M 1 I lkil

Ilit

1004. . hiL 4 .

-4200 .. ..

')300
o 1 2 3 4 587

time (seconds)

Mb FILTER vs ACTUAL ERROR (POGO VELOCITY)

Figure F. I I Popo Velocity (Filter State 8)
(Truth =l.12/2On, Filter =1.12/2M)

F- 12



4 4

+ 0 +0

-2 .... I ....I .............. I .... -2

- 3 . . . . .I . I .. . . . . . . . 3 . .. .. . . . .. . . . . .. . . ... . .

0 12 34656 7 0 12 34667
time (seconds) time (seconds)

FUR (1) residual FUR (2) residual

.0.

-14

0 1 2 34 5667
time (secons)

laser residual

Figure F. 12 Filter Residual Quatiies

P- 13



.6

.. ... .....

0 1

-. 2 3I 4 A

II A.

I A

-4 .... .......

o 2 3 4 567
time (seconds)

(b) (a FILE vATERL ERRTR (POGOPOION

6.
Figur F. 3 I~go Ps~oo Filtr Stte 7

(TuI = 1. 122 ,Fle =0 22x

x lilA ~ ~ ~ F-4~ l'A A



m40 l
3 0 ... ......... ........ --- -- - .. .. . .. .

-(10 
. ........

. -20 .... . . ..

tg -40
04 0 2 3 4 5 6 7

time (seconds)
(a) FILTER vs TRUE POGO VELOCITY

~ 150. .... .. . ....

,i 
I tf l ' 4 4 .

4 
it, 1

0 - 3 46

it ~~F 15 1 i



44

+0 +0

0 1 2 3 4 568 7 -4 3 4 5
time (seconds) time (seconds)

FUR (1) residual FUR (2) residual
4

*0

04 1 2 3 6 6

time (seconds)
laser residual

Figure F, I15 Filter Residual Quantities
'Trudi 1. 12iJ20i, Filter =0.1 l1220x)

F- 16



0; .

It

O 2 3 4 5 8 7
time (seconds)

(a) FILTER vs TRUE POGO

3 ... .. . . .. .. ... . .. . . . . . . . .. . .. . .

2. . . . . . . . . . . . . . .... . .. .. . . . .....

....

04 go2-At58

( At It 2/0, itr 0.122It)

2 ......



0

0)

Will
-2

-3 lil
0 2

00

-Ilk

0
0i

-1u

00

0 1 2 a 4 587
time (seconds)

(b) FILTER vs ACTUAL ERROR (POGO VELOCITY)

Ngur F.1 P Velocity (Filter State 8)

(Truth= 1. 1 2/20m, Filter= 0. 1 I2n)

F-I8



4 40

+ 0

0 3 .. . .. ... . . . . . .. . . . .. . . . . .

4 ... t us..1- . . . . I - . .1

0 12 3465867 01 2 346876
time (seconds) time (seconds)

FUR (1) residual FUR (2) residual

t 3

+ 0

,4 ...

time (seconds)
laser residual

Figuire F. 18 1Piltcr Residual Quantities
(Truffi 1. I120n, Filwx = 0. 1 1212a)

F- 19



Appendix G

MMAE Configuration #1 Output Plots

This appendix contains the state and error statistics plots of the nine-state elemental
filters. The data depicted in the two types of plots in this appendix are explained in Appenix
A aud B. The state comparison plots show the sample mean truth state over the 5 Monte
Carlo runs compared to the same statistic for the filter estimate. The error statistics plots
represent the error mean ± standard deviation values in pixels (or pixel/second for velocity
and pogo velocity), of the er ors between the filter estimate and true state; true mean ± one
true standard deviation are plotted, along with zero ± one filter-computed stan ard deviation.
Note the filter covariance calculation ij shown in Equation (4.5).
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Appendix H

MMAE Configuration #2 Output Plots

This appendix contains the state and error statistics plots of the nine-state elemental filters.
The data depicted in the two types of plots in this appendix are explained in Appendix A. The
state comparison plots show the truth state over the 5 Monte Cado runs compared to the sane
statistic for the filter estimate. The error statistics plots represent the error mean ± standard
deviation values in pixels (or pixellsecond for velocity and pogo velocity), of the errors betwee
the filter estimate and true state; true mean ± one true standard deviation are plotted, along with
zero ± one filter-computed standard deviation. Now the filter covariaic calculation is shown
in Eaquation (4.5).

All probability calculailons, from this point on, will eclude the leading coofficient and
A,(ti) froir Equations (2.30) and (2.31).
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Appt " lix I

MMAE Configtiration #3 Output Piots

This appendix contains the state and error statistics plots of the nine-state clemcenta filters,
The data depicted in the two types of pl., Is in this appendix are explained in Appendix 1. The
state conparison plots show the sample mean truth state over the 5 Moe Cark runs comparod
to the sa me statistic for the filter esti mate. The error statistics plots represent the error iaean ±
standard deviation values in pixOs (or pixe!/second for veltoity and pogo velocity), of the errors
betweein the fit er estintate ad true sate; true man ± one trua standard deviation are phAted,
along with zero ± one filtf--computed standar deviation.

Note tMe filter covariance calcvilation is shown iWi Equation (4.5).
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Appendix J

MMAE Configuration #4 Output Plots

This appendix contains the state and error statistics plots of the nine-state elemental filters.
The data depicted in the two types of plots in this appendix are explained in Appendix A. The
state comparison plots show the sample mean truth state over tie 5 Monte Carlo runs compared
to the same statistic for the filter estimate. The error statistics plots represent the error mean ±
standard deviation values in pixels (or pixel/second for velocity and pogo velocity), of the errors
between the filter estimate and true state; true mean + one true standard deviation are plotted,
along with zero ± one filter-computed standard deviation.

Note the filter covariance calculation is shown in Equation (4.5)..
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Appendix K

MMAE Configuration #5 Outp,'" Plots

This appendix contains the state and error statistics plots of the nine-stateelemental filters.
The data depicted in the two types of plots in this appendix are explained in Append& A. The
state comparison plots show the sample mean truth state over the 5 Monte Carlo runs compared
to the same statistic for the filter estiniate. The error statistics plots represent the error mean ±
stardard deviation values in pixds (or pixel/second for velocity and pogo velocity), of the errors
betwtom the filter estimate and true state. true meao ± one true standard do-viatiom are plotted,
along with zeao ± one filter-computed stadard deviation.

Note the filter covariaiice calculation is shown in WEiuatiI (4.5),
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